1825 lines
60 KiB
JavaScript
1825 lines
60 KiB
JavaScript
// DEFLATE is a complex format; to read this code, you should probably check the RFC first:
|
|
// https://tools.ietf.org/html/rfc1951
|
|
// You may also wish to take a look at the guide I made about this program:
|
|
// https://gist.github.com/101arrowz/253f31eb5abc3d9275ab943003ffecad
|
|
// Much of the following code is similar to that of UZIP.js:
|
|
// https://github.com/photopea/UZIP.js
|
|
// Many optimizations have been made, so the bundle size is ultimately smaller but performance is similar.
|
|
// Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint
|
|
// is better for memory in most engines (I *think*).
|
|
// Mediocre shim
|
|
var Worker;
|
|
var workerAdd = ";var __w=require('worker_threads');__w.parentPort.on('message',function(m){onmessage({data:m})}),postMessage=function(m,t){__w.parentPort.postMessage(m,t)},close=process.exit;self=global";
|
|
try {
|
|
Worker = require('worker_threads').Worker;
|
|
}
|
|
catch (e) {
|
|
}
|
|
var wk = Worker ? function (c, _, msg, transfer, cb) {
|
|
var done = false;
|
|
var w = new Worker(c + workerAdd, { eval: true })
|
|
.on('error', function (e) { return cb(e, null); })
|
|
.on('message', function (m) { return cb(null, m); })
|
|
.on('exit', function (c) {
|
|
if (c && !done)
|
|
cb(new Error('exited with code ' + c), null);
|
|
});
|
|
w.postMessage(msg, transfer);
|
|
w.terminate = function () {
|
|
done = true;
|
|
return Worker.prototype.terminate.call(w);
|
|
};
|
|
return w;
|
|
} : function (_, __, ___, ____, cb) {
|
|
setImmediate(function () { return cb(new Error('async operations unsupported - update to Node 12+ (or Node 10-11 with the --experimental-worker CLI flag)'), null); });
|
|
var NOP = function () { };
|
|
return {
|
|
terminate: NOP,
|
|
postMessage: NOP
|
|
};
|
|
};
|
|
|
|
// aliases for shorter compressed code (most minifers don't do this)
|
|
var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array;
|
|
// fixed length extra bits
|
|
var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]);
|
|
// fixed distance extra bits
|
|
// see fleb note
|
|
var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]);
|
|
// code length index map
|
|
var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]);
|
|
// get base, reverse index map from extra bits
|
|
var freb = function (eb, start) {
|
|
var b = new u16(31);
|
|
for (var i = 0; i < 31; ++i) {
|
|
b[i] = start += 1 << eb[i - 1];
|
|
}
|
|
// numbers here are at max 18 bits
|
|
var r = new u32(b[30]);
|
|
for (var i = 1; i < 30; ++i) {
|
|
for (var j = b[i]; j < b[i + 1]; ++j) {
|
|
r[j] = ((j - b[i]) << 5) | i;
|
|
}
|
|
}
|
|
return [b, r];
|
|
};
|
|
var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1];
|
|
// we can ignore the fact that the other numbers are wrong; they never happen anyway
|
|
fl[28] = 258, revfl[258] = 28;
|
|
var _b = freb(fdeb, 0), fd = _b[0], revfd = _b[1];
|
|
// map of value to reverse (assuming 16 bits)
|
|
var rev = new u16(32768);
|
|
for (var i = 0; i < 32768; ++i) {
|
|
// reverse table algorithm from SO
|
|
var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1);
|
|
x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2);
|
|
x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4);
|
|
rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1;
|
|
}
|
|
// create huffman tree from u8 "map": index -> code length for code index
|
|
// mb (max bits) must be at most 15
|
|
// TODO: optimize/split up?
|
|
var hMap = (function (cd, mb, r) {
|
|
var s = cd.length;
|
|
// index
|
|
var i = 0;
|
|
// u16 "map": index -> # of codes with bit length = index
|
|
var l = new u16(mb);
|
|
// length of cd must be 288 (total # of codes)
|
|
for (; i < s; ++i)
|
|
++l[cd[i] - 1];
|
|
// u16 "map": index -> minimum code for bit length = index
|
|
var le = new u16(mb);
|
|
for (i = 0; i < mb; ++i) {
|
|
le[i] = (le[i - 1] + l[i - 1]) << 1;
|
|
}
|
|
var co;
|
|
if (r) {
|
|
// u16 "map": index -> number of actual bits, symbol for code
|
|
co = new u16(1 << mb);
|
|
// bits to remove for reverser
|
|
var rvb = 15 - mb;
|
|
for (i = 0; i < s; ++i) {
|
|
// ignore 0 lengths
|
|
if (cd[i]) {
|
|
// num encoding both symbol and bits read
|
|
var sv = (i << 4) | cd[i];
|
|
// free bits
|
|
var r_1 = mb - cd[i];
|
|
// start value
|
|
var v = le[cd[i] - 1]++ << r_1;
|
|
// m is end value
|
|
for (var m = v | ((1 << r_1) - 1); v <= m; ++v) {
|
|
// every 16 bit value starting with the code yields the same result
|
|
co[rev[v] >>> rvb] = sv;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
co = new u16(s);
|
|
for (i = 0; i < s; ++i)
|
|
co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]);
|
|
}
|
|
return co;
|
|
});
|
|
// fixed length tree
|
|
var flt = new u8(288);
|
|
for (var i = 0; i < 144; ++i)
|
|
flt[i] = 8;
|
|
for (var i = 144; i < 256; ++i)
|
|
flt[i] = 9;
|
|
for (var i = 256; i < 280; ++i)
|
|
flt[i] = 7;
|
|
for (var i = 280; i < 288; ++i)
|
|
flt[i] = 8;
|
|
// fixed distance tree
|
|
var fdt = new u8(32);
|
|
for (var i = 0; i < 32; ++i)
|
|
fdt[i] = 5;
|
|
// fixed length map
|
|
var flm = /*#__PURE__*/ hMap(flt, 9, 0), flrm = /*#__PURE__*/ hMap(flt, 9, 1);
|
|
// fixed distance map
|
|
var fdm = /*#__PURE__*/ hMap(fdt, 5, 0), fdrm = /*#__PURE__*/ hMap(fdt, 5, 1);
|
|
// find max of array
|
|
var max = function (a) {
|
|
var m = a[0];
|
|
for (var i = 1; i < a.length; ++i) {
|
|
if (a[i] > m)
|
|
m = a[i];
|
|
}
|
|
return m;
|
|
};
|
|
// read d, starting at bit p and mask with m
|
|
var bits = function (d, p, m) {
|
|
var o = (p / 8) >> 0;
|
|
return ((d[o] | (d[o + 1] << 8)) >>> (p & 7)) & m;
|
|
};
|
|
// read d, starting at bit p continuing for at least 16 bits
|
|
var bits16 = function (d, p) {
|
|
var o = (p / 8) >> 0;
|
|
return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16)) >>> (p & 7));
|
|
};
|
|
// get end of byte
|
|
var shft = function (p) { return ((p / 8) >> 0) + (p & 7 && 1); };
|
|
// typed array slice - allows garbage collector to free original reference,
|
|
// while being more compatible than .slice
|
|
var slc = function (v, s, e) {
|
|
if (s == null || s < 0)
|
|
s = 0;
|
|
if (e == null || e > v.length)
|
|
e = v.length;
|
|
// can't use .constructor in case user-supplied
|
|
var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s);
|
|
n.set(v.subarray(s, e));
|
|
return n;
|
|
};
|
|
// expands raw DEFLATE data
|
|
var inflt = function (dat, buf, st) {
|
|
// source length
|
|
var sl = dat.length;
|
|
// have to estimate size
|
|
var noBuf = !buf || st;
|
|
// no state
|
|
var noSt = !st || st.i;
|
|
if (!st)
|
|
st = {};
|
|
// Assumes roughly 33% compression ratio average
|
|
if (!buf)
|
|
buf = new u8(sl * 3);
|
|
// ensure buffer can fit at least l elements
|
|
var cbuf = function (l) {
|
|
var bl = buf.length;
|
|
// need to increase size to fit
|
|
if (l > bl) {
|
|
// Double or set to necessary, whichever is greater
|
|
var nbuf = new u8(Math.max(bl * 2, l));
|
|
nbuf.set(buf);
|
|
buf = nbuf;
|
|
}
|
|
};
|
|
// last chunk bitpos bytes
|
|
var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n;
|
|
// total bits
|
|
var tbts = sl * 8;
|
|
do {
|
|
if (!lm) {
|
|
// BFINAL - this is only 1 when last chunk is next
|
|
st.f = final = bits(dat, pos, 1);
|
|
// type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman
|
|
var type = bits(dat, pos + 1, 3);
|
|
pos += 3;
|
|
if (!type) {
|
|
// go to end of byte boundary
|
|
var s = shft(pos) + 4, l = dat[s - 4] | (dat[s - 3] << 8), t = s + l;
|
|
if (t > sl) {
|
|
if (noSt)
|
|
throw 'unexpected EOF';
|
|
break;
|
|
}
|
|
// ensure size
|
|
if (noBuf)
|
|
cbuf(bt + l);
|
|
// Copy over uncompressed data
|
|
buf.set(dat.subarray(s, t), bt);
|
|
// Get new bitpos, update byte count
|
|
st.b = bt += l, st.p = pos = t * 8;
|
|
continue;
|
|
}
|
|
else if (type == 1)
|
|
lm = flrm, dm = fdrm, lbt = 9, dbt = 5;
|
|
else if (type == 2) {
|
|
// literal lengths
|
|
var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4;
|
|
var tl = hLit + bits(dat, pos + 5, 31) + 1;
|
|
pos += 14;
|
|
// length+distance tree
|
|
var ldt = new u8(tl);
|
|
// code length tree
|
|
var clt = new u8(19);
|
|
for (var i = 0; i < hcLen; ++i) {
|
|
// use index map to get real code
|
|
clt[clim[i]] = bits(dat, pos + i * 3, 7);
|
|
}
|
|
pos += hcLen * 3;
|
|
// code lengths bits
|
|
var clb = max(clt), clbmsk = (1 << clb) - 1;
|
|
if (!noSt && pos + tl * (clb + 7) > tbts)
|
|
break;
|
|
// code lengths map
|
|
var clm = hMap(clt, clb, 1);
|
|
for (var i = 0; i < tl;) {
|
|
var r = clm[bits(dat, pos, clbmsk)];
|
|
// bits read
|
|
pos += r & 15;
|
|
// symbol
|
|
var s = r >>> 4;
|
|
// code length to copy
|
|
if (s < 16) {
|
|
ldt[i++] = s;
|
|
}
|
|
else {
|
|
// copy count
|
|
var c = 0, n = 0;
|
|
if (s == 16)
|
|
n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1];
|
|
else if (s == 17)
|
|
n = 3 + bits(dat, pos, 7), pos += 3;
|
|
else if (s == 18)
|
|
n = 11 + bits(dat, pos, 127), pos += 7;
|
|
while (n--)
|
|
ldt[i++] = c;
|
|
}
|
|
}
|
|
// length tree distance tree
|
|
var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit);
|
|
// max length bits
|
|
lbt = max(lt);
|
|
// max dist bits
|
|
dbt = max(dt);
|
|
lm = hMap(lt, lbt, 1);
|
|
dm = hMap(dt, dbt, 1);
|
|
}
|
|
else
|
|
throw 'invalid block type';
|
|
if (pos > tbts)
|
|
throw 'unexpected EOF';
|
|
}
|
|
// Make sure the buffer can hold this + the largest possible addition
|
|
// Maximum chunk size (practically, theoretically infinite) is 2^17;
|
|
if (noBuf)
|
|
cbuf(bt + 131072);
|
|
var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1;
|
|
var mxa = lbt + dbt + 18;
|
|
while (noSt || pos + mxa < tbts) {
|
|
// bits read, code
|
|
var c = lm[bits16(dat, pos) & lms], sym = c >>> 4;
|
|
pos += c & 15;
|
|
if (pos > tbts)
|
|
throw 'unexpected EOF';
|
|
if (!c)
|
|
throw 'invalid length/literal';
|
|
if (sym < 256)
|
|
buf[bt++] = sym;
|
|
else if (sym == 256) {
|
|
lm = null;
|
|
break;
|
|
}
|
|
else {
|
|
var add = sym - 254;
|
|
// no extra bits needed if less
|
|
if (sym > 264) {
|
|
// index
|
|
var i = sym - 257, b = fleb[i];
|
|
add = bits(dat, pos, (1 << b) - 1) + fl[i];
|
|
pos += b;
|
|
}
|
|
// dist
|
|
var d = dm[bits16(dat, pos) & dms], dsym = d >>> 4;
|
|
if (!d)
|
|
throw 'invalid distance';
|
|
pos += d & 15;
|
|
var dt = fd[dsym];
|
|
if (dsym > 3) {
|
|
var b = fdeb[dsym];
|
|
dt += bits16(dat, pos) & ((1 << b) - 1), pos += b;
|
|
}
|
|
if (pos > tbts)
|
|
throw 'unexpected EOF';
|
|
if (noBuf)
|
|
cbuf(bt + 131072);
|
|
var end = bt + add;
|
|
for (; bt < end; bt += 4) {
|
|
buf[bt] = buf[bt - dt];
|
|
buf[bt + 1] = buf[bt + 1 - dt];
|
|
buf[bt + 2] = buf[bt + 2 - dt];
|
|
buf[bt + 3] = buf[bt + 3 - dt];
|
|
}
|
|
bt = end;
|
|
}
|
|
}
|
|
st.l = lm, st.p = pos, st.b = bt;
|
|
if (lm)
|
|
final = 1, st.m = lbt, st.d = dm, st.n = dbt;
|
|
} while (!final);
|
|
return bt == buf.length ? buf : slc(buf, 0, bt);
|
|
};
|
|
// starting at p, write the minimum number of bits that can hold v to d
|
|
var wbits = function (d, p, v) {
|
|
v <<= p & 7;
|
|
var o = (p / 8) >> 0;
|
|
d[o] |= v;
|
|
d[o + 1] |= v >>> 8;
|
|
};
|
|
// starting at p, write the minimum number of bits (>8) that can hold v to d
|
|
var wbits16 = function (d, p, v) {
|
|
v <<= p & 7;
|
|
var o = (p / 8) >> 0;
|
|
d[o] |= v;
|
|
d[o + 1] |= v >>> 8;
|
|
d[o + 2] |= v >>> 16;
|
|
};
|
|
// creates code lengths from a frequency table
|
|
var hTree = function (d, mb) {
|
|
// Need extra info to make a tree
|
|
var t = [];
|
|
for (var i = 0; i < d.length; ++i) {
|
|
if (d[i])
|
|
t.push({ s: i, f: d[i] });
|
|
}
|
|
var s = t.length;
|
|
var t2 = t.slice();
|
|
if (!s)
|
|
return [new u8(0), 0];
|
|
if (s == 1) {
|
|
var v = new u8(t[0].s + 1);
|
|
v[t[0].s] = 1;
|
|
return [v, 1];
|
|
}
|
|
t.sort(function (a, b) { return a.f - b.f; });
|
|
// after i2 reaches last ind, will be stopped
|
|
// freq must be greater than largest possible number of symbols
|
|
t.push({ s: -1, f: 25001 });
|
|
var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2;
|
|
t[0] = { s: -1, f: l.f + r.f, l: l, r: r };
|
|
// efficient algorithm from UZIP.js
|
|
// i0 is lookbehind, i2 is lookahead - after processing two low-freq
|
|
// symbols that combined have high freq, will start processing i2 (high-freq,
|
|
// non-composite) symbols instead
|
|
// see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/
|
|
while (i1 != s - 1) {
|
|
l = t[t[i0].f < t[i2].f ? i0++ : i2++];
|
|
r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++];
|
|
t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r };
|
|
}
|
|
var maxSym = t2[0].s;
|
|
for (var i = 1; i < s; ++i) {
|
|
if (t2[i].s > maxSym)
|
|
maxSym = t2[i].s;
|
|
}
|
|
// code lengths
|
|
var tr = new u16(maxSym + 1);
|
|
// max bits in tree
|
|
var mbt = ln(t[i1 - 1], tr, 0);
|
|
if (mbt > mb) {
|
|
// more algorithms from UZIP.js
|
|
// TODO: find out how this code works (debt)
|
|
// ind debt
|
|
var i = 0, dt = 0;
|
|
// left cost
|
|
var lft = mbt - mb, cst = 1 << lft;
|
|
t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; });
|
|
for (; i < s; ++i) {
|
|
var i2_1 = t2[i].s;
|
|
if (tr[i2_1] > mb) {
|
|
dt += cst - (1 << (mbt - tr[i2_1]));
|
|
tr[i2_1] = mb;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
dt >>>= lft;
|
|
while (dt > 0) {
|
|
var i2_2 = t2[i].s;
|
|
if (tr[i2_2] < mb)
|
|
dt -= 1 << (mb - tr[i2_2]++ - 1);
|
|
else
|
|
++i;
|
|
}
|
|
for (; i >= 0 && dt; --i) {
|
|
var i2_3 = t2[i].s;
|
|
if (tr[i2_3] == mb) {
|
|
--tr[i2_3];
|
|
++dt;
|
|
}
|
|
}
|
|
mbt = mb;
|
|
}
|
|
return [new u8(tr), mbt];
|
|
};
|
|
// get the max length and assign length codes
|
|
var ln = function (n, l, d) {
|
|
return n.s == -1
|
|
? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1))
|
|
: (l[n.s] = d);
|
|
};
|
|
// length codes generation
|
|
var lc = function (c) {
|
|
var s = c.length;
|
|
// Note that the semicolon was intentional
|
|
while (s && !c[--s])
|
|
;
|
|
var cl = new u16(++s);
|
|
// ind num streak
|
|
var cli = 0, cln = c[0], cls = 1;
|
|
var w = function (v) { cl[cli++] = v; };
|
|
for (var i = 1; i <= s; ++i) {
|
|
if (c[i] == cln && i != s)
|
|
++cls;
|
|
else {
|
|
if (!cln && cls > 2) {
|
|
for (; cls > 138; cls -= 138)
|
|
w(32754);
|
|
if (cls > 2) {
|
|
w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305);
|
|
cls = 0;
|
|
}
|
|
}
|
|
else if (cls > 3) {
|
|
w(cln), --cls;
|
|
for (; cls > 6; cls -= 6)
|
|
w(8304);
|
|
if (cls > 2)
|
|
w(((cls - 3) << 5) | 8208), cls = 0;
|
|
}
|
|
while (cls--)
|
|
w(cln);
|
|
cls = 1;
|
|
cln = c[i];
|
|
}
|
|
}
|
|
return [cl.subarray(0, cli), s];
|
|
};
|
|
// calculate the length of output from tree, code lengths
|
|
var clen = function (cf, cl) {
|
|
var l = 0;
|
|
for (var i = 0; i < cl.length; ++i)
|
|
l += cf[i] * cl[i];
|
|
return l;
|
|
};
|
|
// writes a fixed block
|
|
// returns the new bit pos
|
|
var wfblk = function (out, pos, dat) {
|
|
// no need to write 00 as type: TypedArray defaults to 0
|
|
var s = dat.length;
|
|
var o = shft(pos + 2);
|
|
out[o] = s & 255;
|
|
out[o + 1] = s >>> 8;
|
|
out[o + 2] = out[o] ^ 255;
|
|
out[o + 3] = out[o + 1] ^ 255;
|
|
for (var i = 0; i < s; ++i)
|
|
out[o + i + 4] = dat[i];
|
|
return (o + 4 + s) * 8;
|
|
};
|
|
// writes a block
|
|
var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) {
|
|
wbits(out, p++, final);
|
|
++lf[256];
|
|
var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1];
|
|
var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1];
|
|
var _c = lc(dlt), lclt = _c[0], nlc = _c[1];
|
|
var _d = lc(ddt), lcdt = _d[0], ndc = _d[1];
|
|
var lcfreq = new u16(19);
|
|
for (var i = 0; i < lclt.length; ++i)
|
|
lcfreq[lclt[i] & 31]++;
|
|
for (var i = 0; i < lcdt.length; ++i)
|
|
lcfreq[lcdt[i] & 31]++;
|
|
var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1];
|
|
var nlcc = 19;
|
|
for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc)
|
|
;
|
|
var flen = (bl + 5) << 3;
|
|
var ftlen = clen(lf, flt) + clen(df, fdt) + eb;
|
|
var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]);
|
|
if (flen <= ftlen && flen <= dtlen)
|
|
return wfblk(out, p, dat.subarray(bs, bs + bl));
|
|
var lm, ll, dm, dl;
|
|
wbits(out, p, 1 + (dtlen < ftlen)), p += 2;
|
|
if (dtlen < ftlen) {
|
|
lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt;
|
|
var llm = hMap(lct, mlcb, 0);
|
|
wbits(out, p, nlc - 257);
|
|
wbits(out, p + 5, ndc - 1);
|
|
wbits(out, p + 10, nlcc - 4);
|
|
p += 14;
|
|
for (var i = 0; i < nlcc; ++i)
|
|
wbits(out, p + 3 * i, lct[clim[i]]);
|
|
p += 3 * nlcc;
|
|
var lcts = [lclt, lcdt];
|
|
for (var it = 0; it < 2; ++it) {
|
|
var clct = lcts[it];
|
|
for (var i = 0; i < clct.length; ++i) {
|
|
var len = clct[i] & 31;
|
|
wbits(out, p, llm[len]), p += lct[len];
|
|
if (len > 15)
|
|
wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
lm = flm, ll = flt, dm = fdm, dl = fdt;
|
|
}
|
|
for (var i = 0; i < li; ++i) {
|
|
if (syms[i] > 255) {
|
|
var len = (syms[i] >>> 18) & 31;
|
|
wbits16(out, p, lm[len + 257]), p += ll[len + 257];
|
|
if (len > 7)
|
|
wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len];
|
|
var dst = syms[i] & 31;
|
|
wbits16(out, p, dm[dst]), p += dl[dst];
|
|
if (dst > 3)
|
|
wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst];
|
|
}
|
|
else {
|
|
wbits16(out, p, lm[syms[i]]), p += ll[syms[i]];
|
|
}
|
|
}
|
|
wbits16(out, p, lm[256]);
|
|
return p + ll[256];
|
|
};
|
|
// deflate options (nice << 13) | chain
|
|
var deo = /*#__PURE__*/ new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]);
|
|
// empty
|
|
var et = /*#__PURE__*/ new u8(0);
|
|
// compresses data into a raw DEFLATE buffer
|
|
var dflt = function (dat, lvl, plvl, pre, post, lst) {
|
|
var s = dat.length;
|
|
var o = new u8(pre + s + 5 * (1 + Math.floor(s / 7000)) + post);
|
|
// writing to this writes to the output buffer
|
|
var w = o.subarray(pre, o.length - post);
|
|
var pos = 0;
|
|
if (!lvl || s < 8) {
|
|
for (var i = 0; i <= s; i += 65535) {
|
|
// end
|
|
var e = i + 65535;
|
|
if (e < s) {
|
|
// write full block
|
|
pos = wfblk(w, pos, dat.subarray(i, e));
|
|
}
|
|
else {
|
|
// write final block
|
|
w[i] = lst;
|
|
pos = wfblk(w, pos, dat.subarray(i, s));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
var opt = deo[lvl - 1];
|
|
var n = opt >>> 13, c = opt & 8191;
|
|
var msk_1 = (1 << plvl) - 1;
|
|
// prev 2-byte val map curr 2-byte val map
|
|
var prev = new u16(32768), head = new u16(msk_1 + 1);
|
|
var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1;
|
|
var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; };
|
|
// 24576 is an arbitrary number of maximum symbols per block
|
|
// 424 buffer for last block
|
|
var syms = new u32(25000);
|
|
// length/literal freq distance freq
|
|
var lf = new u16(288), df = new u16(32);
|
|
// l/lcnt exbits index l/lind waitdx bitpos
|
|
var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0;
|
|
for (; i < s; ++i) {
|
|
// hash value
|
|
var hv = hsh(i);
|
|
// index mod 32768
|
|
var imod = i & 32767;
|
|
// previous index with this value
|
|
var pimod = head[hv];
|
|
prev[imod] = pimod;
|
|
head[hv] = imod;
|
|
// We always should modify head and prev, but only add symbols if
|
|
// this data is not yet processed ("wait" for wait index)
|
|
if (wi <= i) {
|
|
// bytes remaining
|
|
var rem = s - i;
|
|
if ((lc_1 > 7000 || li > 24576) && rem > 423) {
|
|
pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos);
|
|
li = lc_1 = eb = 0, bs = i;
|
|
for (var j = 0; j < 286; ++j)
|
|
lf[j] = 0;
|
|
for (var j = 0; j < 30; ++j)
|
|
df[j] = 0;
|
|
}
|
|
// len dist chain
|
|
var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767;
|
|
if (rem > 2 && hv == hsh(i - dif)) {
|
|
var maxn = Math.min(n, rem) - 1;
|
|
var maxd = Math.min(32767, i);
|
|
// max possible length
|
|
// not capped at dif because decompressors implement "rolling" index population
|
|
var ml = Math.min(258, rem);
|
|
while (dif <= maxd && --ch_1 && imod != pimod) {
|
|
if (dat[i + l] == dat[i + l - dif]) {
|
|
var nl = 0;
|
|
for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl)
|
|
;
|
|
if (nl > l) {
|
|
l = nl, d = dif;
|
|
// break out early when we reach "nice" (we are satisfied enough)
|
|
if (nl > maxn)
|
|
break;
|
|
// now, find the rarest 2-byte sequence within this
|
|
// length of literals and search for that instead.
|
|
// Much faster than just using the start
|
|
var mmd = Math.min(dif, nl - 2);
|
|
var md = 0;
|
|
for (var j = 0; j < mmd; ++j) {
|
|
var ti = (i - dif + j + 32768) & 32767;
|
|
var pti = prev[ti];
|
|
var cd = (ti - pti + 32768) & 32767;
|
|
if (cd > md)
|
|
md = cd, pimod = ti;
|
|
}
|
|
}
|
|
}
|
|
// check the previous match
|
|
imod = pimod, pimod = prev[imod];
|
|
dif += (imod - pimod + 32768) & 32767;
|
|
}
|
|
}
|
|
// d will be nonzero only when a match was found
|
|
if (d) {
|
|
// store both dist and len data in one Uint32
|
|
// Make sure this is recognized as a len/dist with 28th bit (2^28)
|
|
syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d];
|
|
var lin = revfl[l] & 31, din = revfd[d] & 31;
|
|
eb += fleb[lin] + fdeb[din];
|
|
++lf[257 + lin];
|
|
++df[din];
|
|
wi = i + l;
|
|
++lc_1;
|
|
}
|
|
else {
|
|
syms[li++] = dat[i];
|
|
++lf[dat[i]];
|
|
}
|
|
}
|
|
}
|
|
pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos);
|
|
// this is the easiest way to avoid needing to maintain state
|
|
if (!lst)
|
|
pos = wfblk(w, pos, et);
|
|
}
|
|
return slc(o, 0, pre + shft(pos) + post);
|
|
};
|
|
// CRC32 table
|
|
var crct = /*#__PURE__*/ (function () {
|
|
var t = new u32(256);
|
|
for (var i = 0; i < 256; ++i) {
|
|
var c = i, k = 9;
|
|
while (--k)
|
|
c = ((c & 1) && 0xEDB88320) ^ (c >>> 1);
|
|
t[i] = c;
|
|
}
|
|
return t;
|
|
})();
|
|
// CRC32
|
|
var crc = function () {
|
|
var c = 0xFFFFFFFF;
|
|
return {
|
|
p: function (d) {
|
|
// closures have awful performance
|
|
var cr = c;
|
|
for (var i = 0; i < d.length; ++i)
|
|
cr = crct[(cr & 255) ^ d[i]] ^ (cr >>> 8);
|
|
c = cr;
|
|
},
|
|
d: function () { return c ^ 0xFFFFFFFF; }
|
|
};
|
|
};
|
|
// Alder32
|
|
var adler = function () {
|
|
var a = 1, b = 0;
|
|
return {
|
|
p: function (d) {
|
|
// closures have awful performance
|
|
var n = a, m = b;
|
|
var l = d.length;
|
|
for (var i = 0; i != l;) {
|
|
var e = Math.min(i + 5552, l);
|
|
for (; i < e; ++i)
|
|
n += d[i], m += n;
|
|
n %= 65521, m %= 65521;
|
|
}
|
|
a = n, b = m;
|
|
},
|
|
d: function () { return ((a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8)) + ((a & 255) << 23) * 2; }
|
|
};
|
|
};
|
|
;
|
|
// deflate with opts
|
|
var dopt = function (dat, opt, pre, post, st) {
|
|
return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st);
|
|
};
|
|
// Walmart object spread
|
|
var mrg = function (a, b) {
|
|
var o = {};
|
|
for (var k in a)
|
|
o[k] = a[k];
|
|
for (var k in b)
|
|
o[k] = b[k];
|
|
return o;
|
|
};
|
|
// worker clone
|
|
// This is possibly the craziest part of the entire codebase, despite how simple it may seem.
|
|
// The only parameter to this function is a closure that returns an array of variables outside of the function scope.
|
|
// We're going to try to figure out the variable names used in the closure as strings because that is crucial for workerization.
|
|
// We will return an object mapping of true variable name to value (basically, the current scope as a JS object).
|
|
// The reason we can't just use the original variable names is minifiers mangling the toplevel scope.
|
|
// This took me three weeks to figure out how to do.
|
|
var wcln = function (fn, fnStr, td) {
|
|
var dt = fn();
|
|
var st = fn.toString();
|
|
var ks = st.slice(st.indexOf('[') + 1, st.lastIndexOf(']')).replace(/ /g, '').split(',');
|
|
for (var i = 0; i < dt.length; ++i) {
|
|
var v = dt[i], k = ks[i];
|
|
if (typeof v == 'function') {
|
|
fnStr += ';' + k + '=';
|
|
var st_1 = v.toString();
|
|
if (v.prototype) {
|
|
// for global objects
|
|
if (st_1.indexOf('[native code]') != -1) {
|
|
var spInd = st_1.indexOf(' ', 8) + 1;
|
|
fnStr += st_1.slice(spInd, st_1.indexOf('(', spInd));
|
|
}
|
|
else {
|
|
fnStr += st_1;
|
|
for (var t in v.prototype)
|
|
fnStr += ';' + k + '.prototype.' + t + '=' + v.prototype[t].toString();
|
|
}
|
|
}
|
|
else
|
|
fnStr += st_1;
|
|
}
|
|
else
|
|
td[k] = v;
|
|
}
|
|
return [fnStr, td];
|
|
};
|
|
var ch = [];
|
|
// clone bufs
|
|
var cbfs = function (v) {
|
|
var tl = [];
|
|
for (var k in v) {
|
|
if (v[k] instanceof u8 || v[k] instanceof u16 || v[k] instanceof u32)
|
|
tl.push((v[k] = new v[k].constructor(v[k])).buffer);
|
|
}
|
|
return tl;
|
|
};
|
|
// use a worker to execute code
|
|
var wrkr = function (fns, init, id, cb) {
|
|
var _a;
|
|
if (!ch[id]) {
|
|
var fnStr = '', td_1 = {}, m = fns.length - 1;
|
|
for (var i = 0; i < m; ++i)
|
|
_a = wcln(fns[i], fnStr, td_1), fnStr = _a[0], td_1 = _a[1];
|
|
ch[id] = wcln(fns[m], fnStr, td_1);
|
|
}
|
|
var td = mrg({}, ch[id][1]);
|
|
return wk(ch[id][0] + ';onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=' + init.toString() + '}', id, td, cbfs(td), cb);
|
|
};
|
|
// base async inflate fn
|
|
var bInflt = function () { return [u8, u16, u32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, hMap, max, bits, bits16, shft, slc, inflt, inflateSync, pbf, gu8]; };
|
|
var bDflt = function () { return [u8, u16, u32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf]; };
|
|
// gzip extra
|
|
var gze = function () { return [gzh, gzhl, wbytes, crc, crct]; };
|
|
// gunzip extra
|
|
var guze = function () { return [gzs, gzl]; };
|
|
// zlib extra
|
|
var zle = function () { return [zlh, wbytes, adler]; };
|
|
// unzlib extra
|
|
var zule = function () { return [zlv]; };
|
|
// post buf
|
|
var pbf = function (msg) { return postMessage(msg, [msg.buffer]); };
|
|
// get u8
|
|
var gu8 = function (o) { return o && o.size && new u8(o.size); };
|
|
// async helper
|
|
var cbify = function (dat, opts, fns, init, id, cb) {
|
|
var w = wrkr(fns, init, id, function (err, dat) {
|
|
w.terminate();
|
|
cb(err, dat);
|
|
});
|
|
if (!opts.consume)
|
|
dat = new u8(dat);
|
|
w.postMessage([dat, opts], [dat.buffer]);
|
|
return function () { w.terminate(); };
|
|
};
|
|
// auto stream
|
|
var astrm = function (strm) {
|
|
strm.ondata = function (dat, final) { return postMessage([dat, final], [dat.buffer]); };
|
|
return function (ev) { return strm.push(ev.data[0], ev.data[1]); };
|
|
};
|
|
// async stream attach
|
|
var astrmify = function (fns, strm, opts, init, id) {
|
|
var t;
|
|
var w = wrkr(fns, init, id, function (err, dat) {
|
|
if (err)
|
|
w.terminate(), strm.ondata.call(strm, err);
|
|
else {
|
|
if (dat[1])
|
|
w.terminate();
|
|
strm.ondata.call(strm, err, dat[0], dat[1]);
|
|
}
|
|
});
|
|
w.postMessage(opts);
|
|
strm.push = function (d, f) {
|
|
if (t)
|
|
throw 'stream finished';
|
|
if (!strm.ondata)
|
|
throw 'no stream handler';
|
|
w.postMessage([d, t = f], [d.buffer]);
|
|
};
|
|
strm.terminate = function () { w.terminate(); };
|
|
};
|
|
// read 2 bytes
|
|
var b2 = function (d, b) { return d[b] | (d[b + 1] << 8); };
|
|
// read 4 bytes
|
|
var b4 = function (d, b) { return (d[b] | (d[b + 1] << 8) | (d[b + 2] << 16)) + (d[b + 3] << 23) * 2; };
|
|
// write bytes
|
|
var wbytes = function (d, b, v) {
|
|
for (; v; ++b)
|
|
d[b] = v, v >>>= 8;
|
|
};
|
|
// gzip header
|
|
var gzh = function (c, o) {
|
|
var fn = o.filename;
|
|
c[0] = 31, c[1] = 139, c[2] = 8, c[8] = o.level < 2 ? 4 : o.level == 9 ? 2 : 0, c[9] = 3; // assume Unix
|
|
if (o.mtime != 0)
|
|
wbytes(c, 4, Math.floor(new Date(o.mtime || Date.now()) / 1000));
|
|
if (fn) {
|
|
c[3] = 8;
|
|
for (var i = 0; i <= fn.length; ++i)
|
|
c[i + 10] = fn.charCodeAt(i);
|
|
}
|
|
};
|
|
// gzip footer: -8 to -4 = CRC, -4 to -0 is length
|
|
// gzip start
|
|
var gzs = function (d) {
|
|
if (d[0] != 31 || d[1] != 139 || d[2] != 8)
|
|
throw 'invalid gzip data';
|
|
var flg = d[3];
|
|
var st = 10;
|
|
if (flg & 4)
|
|
st += d[10] | (d[11] << 8) + 2;
|
|
for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++])
|
|
;
|
|
return st + (flg & 2);
|
|
};
|
|
// gzip length
|
|
var gzl = function (d) {
|
|
var l = d.length;
|
|
return (d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16) + (2 * (d[l - 1] << 23));
|
|
};
|
|
// gzip header length
|
|
var gzhl = function (o) { return 10 + ((o.filename && (o.filename.length + 1)) || 0); };
|
|
// zlib header
|
|
var zlh = function (c, o) {
|
|
var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2;
|
|
c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1);
|
|
};
|
|
// zlib valid
|
|
var zlv = function (d) {
|
|
if ((d[0] & 15) != 8 || (d[0] >>> 4) > 7 || ((d[0] << 8 | d[1]) % 31))
|
|
throw 'invalid zlib data';
|
|
if (d[1] & 32)
|
|
throw 'invalid zlib data: preset dictionaries not supported';
|
|
};
|
|
function AsyncCmpStrm(opts, cb) {
|
|
if (!cb && typeof opts == 'function')
|
|
cb = opts, opts = {};
|
|
this.ondata = cb;
|
|
return opts;
|
|
}
|
|
// zlib footer: -4 to -0 is Adler32
|
|
/**
|
|
* Streaming DEFLATE compression
|
|
*/
|
|
var Deflate = /*#__PURE__*/ (function () {
|
|
function Deflate(opts, cb) {
|
|
if (!cb && typeof opts == 'function')
|
|
cb = opts, opts = {};
|
|
this.ondata = cb;
|
|
this.o = opts || {};
|
|
}
|
|
Deflate.prototype.p = function (c, f) {
|
|
this.ondata(dopt(c, this.o, 0, 0, !f), f);
|
|
};
|
|
/**
|
|
* Pushes a chunk to be deflated
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
Deflate.prototype.push = function (chunk, final) {
|
|
if (this.d)
|
|
throw 'stream finished';
|
|
if (!this.ondata)
|
|
throw 'no stream handler';
|
|
this.d = final;
|
|
this.p(chunk, final || false);
|
|
};
|
|
return Deflate;
|
|
}());
|
|
export { Deflate };
|
|
/**
|
|
* Asynchronous streaming DEFLATE compression
|
|
*/
|
|
var AsyncDeflate = /*#__PURE__*/ (function () {
|
|
function AsyncDeflate(opts, cb) {
|
|
astrmify([
|
|
bDflt,
|
|
function () { return [astrm, Deflate]; }
|
|
], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
|
|
var strm = new Deflate(ev.data);
|
|
onmessage = astrm(strm);
|
|
}, 6);
|
|
}
|
|
return AsyncDeflate;
|
|
}());
|
|
export { AsyncDeflate };
|
|
export function deflate(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return cbify(data, opts, [
|
|
bDflt,
|
|
], function (ev) { return pbf(deflateSync(ev.data[0], ev.data[1])); }, 0, cb);
|
|
}
|
|
/**
|
|
* Compresses data with DEFLATE without any wrapper
|
|
* @param data The data to compress
|
|
* @param opts The compression options
|
|
* @returns The deflated version of the data
|
|
*/
|
|
export function deflateSync(data, opts) {
|
|
if (opts === void 0) { opts = {}; }
|
|
return dopt(data, opts, 0, 0);
|
|
}
|
|
/**
|
|
* Streaming DEFLATE decompression
|
|
*/
|
|
var Inflate = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates an inflation stream
|
|
* @param cb The callback to call whenever data is inflated
|
|
*/
|
|
function Inflate(cb) {
|
|
this.s = {};
|
|
this.p = new u8(0);
|
|
this.ondata = cb;
|
|
}
|
|
Inflate.prototype.e = function (c) {
|
|
if (this.d)
|
|
throw 'stream finished';
|
|
if (!this.ondata)
|
|
throw 'no stream handler';
|
|
var l = this.p.length;
|
|
var n = new u8(l + c.length);
|
|
n.set(this.p), n.set(c, l), this.p = n;
|
|
};
|
|
Inflate.prototype.c = function (final) {
|
|
this.d = this.s.i = final || false;
|
|
var bts = this.s.b;
|
|
var dt = inflt(this.p, this.o, this.s);
|
|
this.ondata(slc(dt, bts, this.s.b), this.d);
|
|
this.o = slc(dt, this.s.b - 32768), this.s.b = this.o.length;
|
|
this.p = slc(this.p, (this.s.p / 8) >> 0), this.s.p &= 7;
|
|
};
|
|
/**
|
|
* Pushes a chunk to be inflated
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the final chunk
|
|
*/
|
|
Inflate.prototype.push = function (chunk, final) {
|
|
this.e(chunk), this.c(final);
|
|
};
|
|
return Inflate;
|
|
}());
|
|
export { Inflate };
|
|
/**
|
|
* Asynchronous streaming DEFLATE decompression
|
|
*/
|
|
var AsyncInflate = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates an asynchronous inflation stream
|
|
* @param cb The callback to call whenever data is deflated
|
|
*/
|
|
function AsyncInflate(cb) {
|
|
this.ondata = cb;
|
|
astrmify([
|
|
bInflt,
|
|
function () { return [astrm, Inflate]; }
|
|
], this, 0, function () {
|
|
var strm = new Inflate();
|
|
onmessage = astrm(strm);
|
|
}, 7);
|
|
}
|
|
return AsyncInflate;
|
|
}());
|
|
export { AsyncInflate };
|
|
export function inflate(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return cbify(data, opts, [
|
|
bInflt
|
|
], function (ev) { return pbf(inflateSync(ev.data[0], gu8(ev.data[1]))); }, 1, cb);
|
|
}
|
|
/**
|
|
* Expands DEFLATE data with no wrapper
|
|
* @param data The data to decompress
|
|
* @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
|
|
* @returns The decompressed version of the data
|
|
*/
|
|
export function inflateSync(data, out) {
|
|
return inflt(data, out);
|
|
}
|
|
// before you yell at me for not just using extends, my reason is that TS inheritance is hard to workerize.
|
|
/**
|
|
* Streaming GZIP compression
|
|
*/
|
|
var Gzip = /*#__PURE__*/ (function () {
|
|
function Gzip(opts, cb) {
|
|
this.c = crc();
|
|
this.l = 0;
|
|
this.v = 1;
|
|
Deflate.call(this, opts, cb);
|
|
}
|
|
/**
|
|
* Pushes a chunk to be GZIPped
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
Gzip.prototype.push = function (chunk, final) {
|
|
Deflate.prototype.push.call(this, chunk, final);
|
|
};
|
|
Gzip.prototype.p = function (c, f) {
|
|
this.c.p(c);
|
|
this.l += c.length;
|
|
var raw = dopt(c, this.o, this.v && gzhl(this.o), f && 8, !f);
|
|
if (this.v)
|
|
gzh(raw, this.o), this.v = 0;
|
|
if (f)
|
|
wbytes(raw, raw.length - 8, this.c.d()), wbytes(raw, raw.length - 4, this.l);
|
|
this.ondata(raw, f);
|
|
};
|
|
return Gzip;
|
|
}());
|
|
export { Gzip };
|
|
/**
|
|
* Asynchronous streaming GZIP compression
|
|
*/
|
|
var AsyncGzip = /*#__PURE__*/ (function () {
|
|
function AsyncGzip(opts, cb) {
|
|
astrmify([
|
|
bDflt,
|
|
gze,
|
|
function () { return [astrm, Deflate, Gzip]; }
|
|
], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
|
|
var strm = new Gzip(ev.data);
|
|
onmessage = astrm(strm);
|
|
}, 8);
|
|
}
|
|
return AsyncGzip;
|
|
}());
|
|
export { AsyncGzip };
|
|
export function gzip(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return cbify(data, opts, [
|
|
bDflt,
|
|
gze,
|
|
function () { return [gzipSync]; }
|
|
], function (ev) { return pbf(gzipSync(ev.data[0], ev.data[1])); }, 2, cb);
|
|
}
|
|
/**
|
|
* Compresses data with GZIP
|
|
* @param data The data to compress
|
|
* @param opts The compression options
|
|
* @returns The gzipped version of the data
|
|
*/
|
|
export function gzipSync(data, opts) {
|
|
if (opts === void 0) { opts = {}; }
|
|
var c = crc(), l = data.length;
|
|
c.p(data);
|
|
var d = dopt(data, opts, gzhl(opts), 8), s = d.length;
|
|
return gzh(d, opts), wbytes(d, s - 8, c.d()), wbytes(d, s - 4, l), d;
|
|
}
|
|
/**
|
|
* Streaming GZIP decompression
|
|
*/
|
|
var Gunzip = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates a GUNZIP stream
|
|
* @param cb The callback to call whenever data is inflated
|
|
*/
|
|
function Gunzip(cb) {
|
|
this.v = 1;
|
|
Inflate.call(this, cb);
|
|
}
|
|
/**
|
|
* Pushes a chunk to be GUNZIPped
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
Gunzip.prototype.push = function (chunk, final) {
|
|
Inflate.prototype.e.call(this, chunk);
|
|
if (this.v) {
|
|
var s = gzs(this.p);
|
|
if (s >= this.p.length && !final)
|
|
return;
|
|
this.p = this.p.subarray(s), this.v = 0;
|
|
}
|
|
if (final) {
|
|
if (this.p.length < 8)
|
|
throw 'invalid gzip stream';
|
|
this.p = this.p.subarray(0, -8);
|
|
}
|
|
// necessary to prevent TS from using the closure value
|
|
// This allows for workerization to function correctly
|
|
Inflate.prototype.c.call(this, final);
|
|
};
|
|
return Gunzip;
|
|
}());
|
|
export { Gunzip };
|
|
/**
|
|
* Asynchronous streaming GZIP decompression
|
|
*/
|
|
var AsyncGunzip = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates an asynchronous GUNZIP stream
|
|
* @param cb The callback to call whenever data is deflated
|
|
*/
|
|
function AsyncGunzip(cb) {
|
|
this.ondata = cb;
|
|
astrmify([
|
|
bInflt,
|
|
guze,
|
|
function () { return [astrm, Inflate, Gunzip]; }
|
|
], this, 0, function () {
|
|
var strm = new Gunzip();
|
|
onmessage = astrm(strm);
|
|
}, 9);
|
|
}
|
|
return AsyncGunzip;
|
|
}());
|
|
export { AsyncGunzip };
|
|
export function gunzip(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return cbify(data, opts, [
|
|
bInflt,
|
|
guze,
|
|
function () { return [gunzipSync]; }
|
|
], function (ev) { return pbf(gunzipSync(ev.data[0])); }, 3, cb);
|
|
}
|
|
/**
|
|
* Expands GZIP data
|
|
* @param data The data to decompress
|
|
* @param out Where to write the data. GZIP already encodes the output size, so providing this doesn't save memory.
|
|
* @returns The decompressed version of the data
|
|
*/
|
|
export function gunzipSync(data, out) {
|
|
return inflt(data.subarray(gzs(data), -8), out || new u8(gzl(data)));
|
|
}
|
|
/**
|
|
* Streaming Zlib compression
|
|
*/
|
|
var Zlib = /*#__PURE__*/ (function () {
|
|
function Zlib(opts, cb) {
|
|
this.c = adler();
|
|
this.v = 1;
|
|
Deflate.call(this, opts, cb);
|
|
}
|
|
/**
|
|
* Pushes a chunk to be zlibbed
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
Zlib.prototype.push = function (chunk, final) {
|
|
Deflate.prototype.push.call(this, chunk, final);
|
|
};
|
|
Zlib.prototype.p = function (c, f) {
|
|
this.c.p(c);
|
|
var raw = dopt(c, this.o, this.v && 2, f && 4, !f);
|
|
if (this.v)
|
|
zlh(raw, this.o), this.v = 0;
|
|
if (f)
|
|
wbytes(raw, raw.length - 4, this.c.d());
|
|
this.ondata(raw, f);
|
|
};
|
|
return Zlib;
|
|
}());
|
|
export { Zlib };
|
|
/**
|
|
* Asynchronous streaming Zlib compression
|
|
*/
|
|
var AsyncZlib = /*#__PURE__*/ (function () {
|
|
function AsyncZlib(opts, cb) {
|
|
astrmify([
|
|
bDflt,
|
|
zle,
|
|
function () { return [astrm, Deflate, Zlib]; }
|
|
], this, AsyncCmpStrm.call(this, opts, cb), function (ev) {
|
|
var strm = new Zlib(ev.data);
|
|
onmessage = astrm(strm);
|
|
}, 10);
|
|
}
|
|
return AsyncZlib;
|
|
}());
|
|
export { AsyncZlib };
|
|
export function zlib(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return cbify(data, opts, [
|
|
bDflt,
|
|
zle,
|
|
function () { return [zlibSync]; }
|
|
], function (ev) { return pbf(zlibSync(ev.data[0], ev.data[1])); }, 4, cb);
|
|
}
|
|
/**
|
|
* Compress data with Zlib
|
|
* @param data The data to compress
|
|
* @param opts The compression options
|
|
* @returns The zlib-compressed version of the data
|
|
*/
|
|
export function zlibSync(data, opts) {
|
|
if (opts === void 0) { opts = {}; }
|
|
var a = adler();
|
|
a.p(data);
|
|
var d = dopt(data, opts, 2, 4);
|
|
return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d;
|
|
}
|
|
/**
|
|
* Streaming Zlib decompression
|
|
*/
|
|
var Unzlib = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates a Zlib decompression stream
|
|
* @param cb The callback to call whenever data is inflated
|
|
*/
|
|
function Unzlib(cb) {
|
|
this.v = 1;
|
|
Inflate.call(this, cb);
|
|
}
|
|
/**
|
|
* Pushes a chunk to be unzlibbed
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
Unzlib.prototype.push = function (chunk, final) {
|
|
Inflate.prototype.e.call(this, chunk);
|
|
if (this.v) {
|
|
if (this.p.length < 2 && !final)
|
|
return;
|
|
this.p = this.p.subarray(2), this.v = 0;
|
|
}
|
|
if (final) {
|
|
if (this.p.length < 4)
|
|
throw 'invalid zlib stream';
|
|
this.p = this.p.subarray(0, -4);
|
|
}
|
|
// necessary to prevent TS from using the closure value
|
|
// This allows for workerization to function correctly
|
|
Inflate.prototype.c.call(this, final);
|
|
};
|
|
return Unzlib;
|
|
}());
|
|
export { Unzlib };
|
|
/**
|
|
* Asynchronous streaming Zlib decompression
|
|
*/
|
|
var AsyncUnzlib = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates an asynchronous Zlib decompression stream
|
|
* @param cb The callback to call whenever data is deflated
|
|
*/
|
|
function AsyncUnzlib(cb) {
|
|
this.ondata = cb;
|
|
astrmify([
|
|
bInflt,
|
|
zule,
|
|
function () { return [astrm, Inflate, Unzlib]; }
|
|
], this, 0, function () {
|
|
var strm = new Unzlib();
|
|
onmessage = astrm(strm);
|
|
}, 11);
|
|
}
|
|
return AsyncUnzlib;
|
|
}());
|
|
export { AsyncUnzlib };
|
|
export function unzlib(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return cbify(data, opts, [
|
|
bInflt,
|
|
zule,
|
|
function () { return [unzlibSync]; }
|
|
], function (ev) { return pbf(unzlibSync(ev.data[0], gu8(ev.data[1]))); }, 5, cb);
|
|
}
|
|
/**
|
|
* Expands Zlib data
|
|
* @param data The data to decompress
|
|
* @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
|
|
* @returns The decompressed version of the data
|
|
*/
|
|
export function unzlibSync(data, out) {
|
|
return inflt((zlv(data), data.subarray(2, -4)), out);
|
|
}
|
|
// Default algorithm for compression (used because having a known output size allows faster decompression)
|
|
export { gzip as compress, AsyncGzip as AsyncCompress };
|
|
// Default algorithm for compression (used because having a known output size allows faster decompression)
|
|
export { gzipSync as compressSync, Gzip as Compress };
|
|
/**
|
|
* Streaming GZIP, Zlib, or raw DEFLATE decompression
|
|
*/
|
|
var Decompress = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates a decompression stream
|
|
* @param cb The callback to call whenever data is decompressed
|
|
*/
|
|
function Decompress(cb) {
|
|
this.G = Gunzip;
|
|
this.I = Inflate;
|
|
this.Z = Unzlib;
|
|
this.ondata = cb;
|
|
}
|
|
/**
|
|
* Pushes a chunk to be decompressed
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
Decompress.prototype.push = function (chunk, final) {
|
|
if (!this.ondata)
|
|
throw 'no stream handler';
|
|
if (!this.s) {
|
|
if (this.p && this.p.length) {
|
|
var n = new u8(this.p.length + chunk.length);
|
|
n.set(this.p), n.set(chunk, this.p.length);
|
|
}
|
|
else
|
|
this.p = chunk;
|
|
if (this.p.length > 2) {
|
|
var _this_1 = this;
|
|
var cb = function () { _this_1.ondata.apply(_this_1, arguments); };
|
|
this.s = (this.p[0] == 31 && this.p[1] == 139 && this.p[2] == 8)
|
|
? new this.G(cb)
|
|
: ((this.p[0] & 15) != 8 || (this.p[0] >> 4) > 7 || ((this.p[0] << 8 | this.p[1]) % 31))
|
|
? new this.I(cb)
|
|
: new this.Z(cb);
|
|
this.s.push(this.p, final);
|
|
this.p = null;
|
|
}
|
|
}
|
|
else
|
|
this.s.push(chunk, final);
|
|
};
|
|
return Decompress;
|
|
}());
|
|
export { Decompress };
|
|
/**
|
|
* Asynchronous streaming GZIP, Zlib, or raw DEFLATE decompression
|
|
*/
|
|
var AsyncDecompress = /*#__PURE__*/ (function () {
|
|
/**
|
|
* Creates an asynchronous decompression stream
|
|
* @param cb The callback to call whenever data is decompressed
|
|
*/
|
|
function AsyncDecompress(cb) {
|
|
this.G = AsyncGunzip;
|
|
this.I = AsyncInflate;
|
|
this.Z = AsyncUnzlib;
|
|
this.ondata = cb;
|
|
}
|
|
/**
|
|
* Pushes a chunk to be decompressed
|
|
* @param chunk The chunk to push
|
|
* @param final Whether this is the last chunk
|
|
*/
|
|
AsyncDecompress.prototype.push = function (chunk, final) {
|
|
Decompress.prototype.push.call(this, chunk, final);
|
|
};
|
|
return AsyncDecompress;
|
|
}());
|
|
export { AsyncDecompress };
|
|
export function decompress(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
return (data[0] == 31 && data[1] == 139 && data[2] == 8)
|
|
? gunzip(data, opts, cb)
|
|
: ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31))
|
|
? inflate(data, opts, cb)
|
|
: unzlib(data, opts, cb);
|
|
}
|
|
/**
|
|
* Expands compressed GZIP, Zlib, or raw DEFLATE data, automatically detecting the format
|
|
* @param data The data to decompress
|
|
* @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length.
|
|
* @returns The decompressed version of the data
|
|
*/
|
|
export function decompressSync(data, out) {
|
|
return (data[0] == 31 && data[1] == 139 && data[2] == 8)
|
|
? gunzipSync(data, out)
|
|
: ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31))
|
|
? inflateSync(data, out)
|
|
: unzlibSync(data, out);
|
|
}
|
|
// flatten a directory structure
|
|
var fltn = function (d, p, t, o) {
|
|
for (var k in d) {
|
|
var val = d[k], n = p + k;
|
|
if (val instanceof u8)
|
|
t[n] = [val, o];
|
|
else if (Array.isArray(val))
|
|
t[n] = [val[0], mrg(o, val[1])];
|
|
else
|
|
fltn(val, n + '/', t, o);
|
|
}
|
|
};
|
|
/**
|
|
* Converts a string into a Uint8Array for use with compression/decompression methods
|
|
* @param str The string to encode
|
|
* @param latin1 Whether or not to interpret the data as Latin-1. This should
|
|
* not need to be true unless decoding a binary string.
|
|
* @returns The string encoded in UTF-8/Latin-1 binary
|
|
*/
|
|
export function strToU8(str, latin1) {
|
|
var l = str.length;
|
|
if (!latin1 && typeof TextEncoder != 'undefined')
|
|
return new TextEncoder().encode(str);
|
|
var ar = new u8(str.length + (str.length >>> 1));
|
|
var ai = 0;
|
|
var w = function (v) { ar[ai++] = v; };
|
|
for (var i = 0; i < l; ++i) {
|
|
if (ai + 5 > ar.length) {
|
|
var n = new u8(ai + 8 + ((l - i) << 1));
|
|
n.set(ar);
|
|
ar = n;
|
|
}
|
|
var c = str.charCodeAt(i);
|
|
if (c < 128 || latin1)
|
|
w(c);
|
|
else if (c < 2048)
|
|
w(192 | (c >>> 6)), w(128 | (c & 63));
|
|
else if (c > 55295 && c < 57344)
|
|
c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023),
|
|
w(240 | (c >>> 18)), w(128 | ((c >>> 12) & 63)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
|
|
else
|
|
w(224 | (c >>> 12)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63));
|
|
}
|
|
return slc(ar, 0, ai);
|
|
}
|
|
/**
|
|
* Converts a Uint8Array to a string
|
|
* @param dat The data to decode to string
|
|
* @param latin1 Whether or not to interpret the data as Latin-1. This should
|
|
* not need to be true unless encoding to binary string.
|
|
* @returns The original UTF-8/Latin-1 string
|
|
*/
|
|
export function strFromU8(dat, latin1) {
|
|
var r = '';
|
|
if (!latin1 && typeof TextDecoder != 'undefined')
|
|
return new TextDecoder().decode(dat);
|
|
for (var i = 0; i < dat.length;) {
|
|
var c = dat[i++];
|
|
if (c < 128 || latin1)
|
|
r += String.fromCharCode(c);
|
|
else if (c < 224)
|
|
r += String.fromCharCode((c & 31) << 6 | (dat[i++] & 63));
|
|
else if (c < 240)
|
|
r += String.fromCharCode((c & 15) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63));
|
|
else
|
|
c = ((c & 15) << 18 | (dat[i++] & 63) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)) - 65536,
|
|
r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023));
|
|
}
|
|
return r;
|
|
}
|
|
;
|
|
// skip local zip header
|
|
var slzh = function (d, b) { return b + 30 + b2(d, b + 26) + b2(d, b + 28); };
|
|
// read zip header
|
|
var zh = function (d, b, z) {
|
|
var fnl = b2(d, b + 28), fn = strFromU8(d.subarray(b + 46, b + 46 + fnl), !(b2(d, b + 8) & 2048)), es = b + 46 + fnl;
|
|
var _a = z ? z64e(d, es) : [b4(d, b + 20), b4(d, b + 24), b4(d, b + 42)], sc = _a[0], su = _a[1], off = _a[2];
|
|
return [b2(d, b + 10), sc, su, fn, es + b2(d, b + 30) + b2(d, b + 32), off];
|
|
};
|
|
// read zip64 extra field
|
|
var z64e = function (d, b) {
|
|
for (; b2(d, b) != 1; b += 4 + b2(d, b + 2))
|
|
;
|
|
return [b4(d, b + 12), b4(d, b + 4), b4(d, b + 20)];
|
|
};
|
|
// write zip header
|
|
var wzh = function (d, b, c, cmp, su, fn, u, o, ce, t) {
|
|
var fl = fn.length, l = cmp.length;
|
|
wbytes(d, b, ce != null ? 0x2014B50 : 0x4034B50), b += 4;
|
|
if (ce != null)
|
|
d[b] = 20, b += 2;
|
|
d[b] = 20, b += 2; // spec compliance? what's that?
|
|
d[b++] = (t == 8 && (o.level == 1 ? 6 : o.level < 6 ? 4 : o.level == 9 ? 2 : 0)), d[b++] = u && 8;
|
|
d[b] = t, b += 2;
|
|
var dt = new Date(o.mtime || Date.now()), y = dt.getFullYear() - 1980;
|
|
if (y < 0 || y > 119)
|
|
throw 'date not in range 1980-2099';
|
|
wbytes(d, b, ((y << 24) * 2) | ((dt.getMonth() + 1) << 21) | (dt.getDate() << 16) | (dt.getHours() << 11) | (dt.getMinutes() << 5) | (dt.getSeconds() >>> 1));
|
|
b += 4;
|
|
wbytes(d, b, c);
|
|
wbytes(d, b + 4, l);
|
|
wbytes(d, b + 8, su);
|
|
wbytes(d, b + 12, fl), b += 16; // skip extra field, comment
|
|
if (ce != null)
|
|
wbytes(d, b += 10, ce), b += 4;
|
|
d.set(fn, b);
|
|
b += fl;
|
|
if (ce == null)
|
|
d.set(cmp, b);
|
|
};
|
|
// write zip footer (end of central directory)
|
|
var wzf = function (o, b, c, d, e) {
|
|
wbytes(o, b, 0x6054B50); // skip disk
|
|
wbytes(o, b + 8, c);
|
|
wbytes(o, b + 10, c);
|
|
wbytes(o, b + 12, d);
|
|
wbytes(o, b + 16, e);
|
|
};
|
|
export function zip(data, opts, cb) {
|
|
if (!cb)
|
|
cb = opts, opts = {};
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
var r = {};
|
|
fltn(data, '', r, opts);
|
|
var k = Object.keys(r);
|
|
var lft = k.length, o = 0, tot = 0;
|
|
var slft = lft, files = new Array(lft);
|
|
var term = [];
|
|
var tAll = function () {
|
|
for (var i = 0; i < term.length; ++i)
|
|
term[i]();
|
|
};
|
|
var cbf = function () {
|
|
var out = new u8(tot + 22), oe = o, cdl = tot - o;
|
|
tot = 0;
|
|
for (var i = 0; i < slft; ++i) {
|
|
var f = files[i];
|
|
try {
|
|
wzh(out, tot, f.c, f.d, f.m, f.n, f.u, f.p, null, f.t);
|
|
wzh(out, o, f.c, f.d, f.m, f.n, f.u, f.p, tot, f.t), o += 46 + f.n.length, tot += 30 + f.n.length + f.d.length;
|
|
}
|
|
catch (e) {
|
|
return cb(e, null);
|
|
}
|
|
}
|
|
wzf(out, o, files.length, cdl, oe);
|
|
cb(null, out);
|
|
};
|
|
if (!lft)
|
|
cbf();
|
|
var _loop_1 = function (i) {
|
|
var fn = k[i];
|
|
var _a = r[fn], file = _a[0], p = _a[1];
|
|
var c = crc(), m = file.length;
|
|
c.p(file);
|
|
var n = strToU8(fn), s = n.length;
|
|
var t = p.level == 0 ? 0 : 8;
|
|
var cbl = function (e, d) {
|
|
if (e) {
|
|
tAll();
|
|
cb(e, null);
|
|
}
|
|
else {
|
|
var l = d.length;
|
|
files[i] = {
|
|
t: t,
|
|
d: d,
|
|
m: m,
|
|
c: c.d(),
|
|
u: fn.length != l,
|
|
n: n,
|
|
p: p
|
|
};
|
|
o += 30 + s + l;
|
|
tot += 76 + 2 * s + l;
|
|
if (!--lft)
|
|
cbf();
|
|
}
|
|
};
|
|
if (n.length > 65535)
|
|
cbl('filename too long', null);
|
|
if (!t)
|
|
cbl(null, file);
|
|
else if (m < 160000) {
|
|
try {
|
|
cbl(null, deflateSync(file, p));
|
|
}
|
|
catch (e) {
|
|
cbl(e, null);
|
|
}
|
|
}
|
|
else
|
|
term.push(deflate(file, p, cbl));
|
|
};
|
|
// Cannot use lft because it can decrease
|
|
for (var i = 0; i < slft; ++i) {
|
|
_loop_1(i);
|
|
}
|
|
return tAll;
|
|
}
|
|
/**
|
|
* Synchronously creates a ZIP file. Prefer using `zip` for better performance
|
|
* with more than one file.
|
|
* @param data The directory structure for the ZIP archive
|
|
* @param opts The main options, merged with per-file options
|
|
* @returns The generated ZIP archive
|
|
*/
|
|
export function zipSync(data, opts) {
|
|
if (opts === void 0) { opts = {}; }
|
|
var r = {};
|
|
var files = [];
|
|
fltn(data, '', r, opts);
|
|
var o = 0;
|
|
var tot = 0;
|
|
for (var fn in r) {
|
|
var _a = r[fn], file = _a[0], p = _a[1];
|
|
var t = p.level == 0 ? 0 : 8;
|
|
var n = strToU8(fn), s = n.length;
|
|
if (n.length > 65535)
|
|
throw 'filename too long';
|
|
var d = t ? deflateSync(file, p) : file, l = d.length;
|
|
var c = crc();
|
|
c.p(file);
|
|
files.push({
|
|
t: t,
|
|
d: d,
|
|
m: file.length,
|
|
c: c.d(),
|
|
u: fn.length != s,
|
|
n: n,
|
|
o: o,
|
|
p: p
|
|
});
|
|
o += 30 + s + l;
|
|
tot += 76 + 2 * s + l;
|
|
}
|
|
var out = new u8(tot + 22), oe = o, cdl = tot - o;
|
|
for (var i = 0; i < files.length; ++i) {
|
|
var f = files[i];
|
|
wzh(out, f.o, f.c, f.d, f.m, f.n, f.u, f.p, null, f.t);
|
|
wzh(out, o, f.c, f.d, f.m, f.n, f.u, f.p, f.o, f.t), o += 46 + f.n.length;
|
|
}
|
|
wzf(out, o, files.length, cdl, oe);
|
|
return out;
|
|
}
|
|
/**
|
|
* Asynchronously decompresses a ZIP archive
|
|
* @param data The raw compressed ZIP file
|
|
* @param cb The callback to call with the decompressed files
|
|
* @returns A function that can be used to immediately terminate the unzipping
|
|
*/
|
|
export function unzip(data, cb) {
|
|
if (typeof cb != 'function')
|
|
throw 'no callback';
|
|
var term = [];
|
|
var tAll = function () {
|
|
for (var i = 0; i < term.length; ++i)
|
|
term[i]();
|
|
};
|
|
var files = {};
|
|
var e = data.length - 22;
|
|
for (; b4(data, e) != 0x6054B50; --e) {
|
|
if (!e || data.length - e > 65558) {
|
|
cb('invalid zip file', null);
|
|
return;
|
|
}
|
|
}
|
|
;
|
|
var lft = b2(data, e + 8);
|
|
if (!lft)
|
|
cb(null, {});
|
|
var c = lft;
|
|
var o = b4(data, e + 16);
|
|
var z = o == 4294967295;
|
|
if (z) {
|
|
e = b4(data, e - 12);
|
|
if (b4(data, e) != 0x6064B50)
|
|
throw 'invalid zip file';
|
|
c = lft = b4(data, e + 32);
|
|
o = b4(data, e + 48);
|
|
}
|
|
var _loop_2 = function (i) {
|
|
var _a = zh(data, o, z), c_1 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off);
|
|
o = no;
|
|
var cbl = function (e, d) {
|
|
if (e) {
|
|
tAll();
|
|
cb(e, null);
|
|
}
|
|
else {
|
|
files[fn] = d;
|
|
if (!--lft)
|
|
cb(null, files);
|
|
}
|
|
};
|
|
if (!c_1)
|
|
cbl(null, slc(data, b, b + sc));
|
|
else if (c_1 == 8) {
|
|
var infl = data.subarray(b, b + sc);
|
|
if (sc < 320000) {
|
|
try {
|
|
cbl(null, inflateSync(infl, new u8(su)));
|
|
}
|
|
catch (e) {
|
|
cbl(e, null);
|
|
}
|
|
}
|
|
else
|
|
term.push(inflate(infl, { size: su }, cbl));
|
|
}
|
|
else
|
|
cbl('unknown compression type ' + c_1, null);
|
|
};
|
|
for (var i = 0; i < c; ++i) {
|
|
_loop_2(i);
|
|
}
|
|
return tAll;
|
|
}
|
|
/**
|
|
* Synchronously decompresses a ZIP archive. Prefer using `unzip` for better
|
|
* performance with more than one file.
|
|
* @param data The raw compressed ZIP file
|
|
* @returns The decompressed files
|
|
*/
|
|
export function unzipSync(data) {
|
|
var files = {};
|
|
var e = data.length - 22;
|
|
for (; b4(data, e) != 0x6054B50; --e) {
|
|
if (!e || data.length - e > 65558)
|
|
throw 'invalid zip file';
|
|
}
|
|
;
|
|
var c = b2(data, e + 8);
|
|
if (!c)
|
|
return {};
|
|
var o = b4(data, e + 16);
|
|
var z = o == 4294967295;
|
|
if (z) {
|
|
e = b4(data, e - 12);
|
|
if (b4(data, e) != 0x6064B50)
|
|
throw 'invalid zip file';
|
|
c = b4(data, e + 32);
|
|
o = b4(data, e + 48);
|
|
}
|
|
for (var i = 0; i < c; ++i) {
|
|
var _a = zh(data, o, z), c_2 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off);
|
|
o = no;
|
|
if (!c_2)
|
|
files[fn] = slc(data, b, b + sc);
|
|
else if (c_2 == 8)
|
|
files[fn] = inflateSync(data.subarray(b, b + sc), new u8(su));
|
|
else
|
|
throw 'unknown compression type ' + c_2;
|
|
}
|
|
return files;
|
|
}
|