// DEFLATE is a complex format; to read this code, you should probably check the RFC first: // https://tools.ietf.org/html/rfc1951 // You may also wish to take a look at the guide I made about this program: // https://gist.github.com/101arrowz/253f31eb5abc3d9275ab943003ffecad // Much of the following code is similar to that of UZIP.js: // https://github.com/photopea/UZIP.js // Many optimizations have been made, so the bundle size is ultimately smaller but performance is similar. // Sometimes 0 will appear where -1 would be more appropriate. This is because using a uint // is better for memory in most engines (I *think*). // Mediocre shim var Worker; var workerAdd = ";var __w=require('worker_threads');__w.parentPort.on('message',function(m){onmessage({data:m})}),postMessage=function(m,t){__w.parentPort.postMessage(m,t)},close=process.exit;self=global"; try { Worker = require('worker_threads').Worker; } catch (e) { } var wk = Worker ? function (c, _, msg, transfer, cb) { var done = false; var w = new Worker(c + workerAdd, { eval: true }) .on('error', function (e) { return cb(e, null); }) .on('message', function (m) { return cb(null, m); }) .on('exit', function (c) { if (c && !done) cb(new Error('exited with code ' + c), null); }); w.postMessage(msg, transfer); w.terminate = function () { done = true; return Worker.prototype.terminate.call(w); }; return w; } : function (_, __, ___, ____, cb) { setImmediate(function () { return cb(new Error('async operations unsupported - update to Node 12+ (or Node 10-11 with the --experimental-worker CLI flag)'), null); }); var NOP = function () { }; return { terminate: NOP, postMessage: NOP }; }; // aliases for shorter compressed code (most minifers don't do this) var u8 = Uint8Array, u16 = Uint16Array, u32 = Uint32Array; // fixed length extra bits var fleb = new u8([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, /* unused */ 0, 0, /* impossible */ 0]); // fixed distance extra bits // see fleb note var fdeb = new u8([0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, /* unused */ 0, 0]); // code length index map var clim = new u8([16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]); // get base, reverse index map from extra bits var freb = function (eb, start) { var b = new u16(31); for (var i = 0; i < 31; ++i) { b[i] = start += 1 << eb[i - 1]; } // numbers here are at max 18 bits var r = new u32(b[30]); for (var i = 1; i < 30; ++i) { for (var j = b[i]; j < b[i + 1]; ++j) { r[j] = ((j - b[i]) << 5) | i; } } return [b, r]; }; var _a = freb(fleb, 2), fl = _a[0], revfl = _a[1]; // we can ignore the fact that the other numbers are wrong; they never happen anyway fl[28] = 258, revfl[258] = 28; var _b = freb(fdeb, 0), fd = _b[0], revfd = _b[1]; // map of value to reverse (assuming 16 bits) var rev = new u16(32768); for (var i = 0; i < 32768; ++i) { // reverse table algorithm from SO var x = ((i & 0xAAAA) >>> 1) | ((i & 0x5555) << 1); x = ((x & 0xCCCC) >>> 2) | ((x & 0x3333) << 2); x = ((x & 0xF0F0) >>> 4) | ((x & 0x0F0F) << 4); rev[i] = (((x & 0xFF00) >>> 8) | ((x & 0x00FF) << 8)) >>> 1; } // create huffman tree from u8 "map": index -> code length for code index // mb (max bits) must be at most 15 // TODO: optimize/split up? var hMap = (function (cd, mb, r) { var s = cd.length; // index var i = 0; // u16 "map": index -> # of codes with bit length = index var l = new u16(mb); // length of cd must be 288 (total # of codes) for (; i < s; ++i) ++l[cd[i] - 1]; // u16 "map": index -> minimum code for bit length = index var le = new u16(mb); for (i = 0; i < mb; ++i) { le[i] = (le[i - 1] + l[i - 1]) << 1; } var co; if (r) { // u16 "map": index -> number of actual bits, symbol for code co = new u16(1 << mb); // bits to remove for reverser var rvb = 15 - mb; for (i = 0; i < s; ++i) { // ignore 0 lengths if (cd[i]) { // num encoding both symbol and bits read var sv = (i << 4) | cd[i]; // free bits var r_1 = mb - cd[i]; // start value var v = le[cd[i] - 1]++ << r_1; // m is end value for (var m = v | ((1 << r_1) - 1); v <= m; ++v) { // every 16 bit value starting with the code yields the same result co[rev[v] >>> rvb] = sv; } } } } else { co = new u16(s); for (i = 0; i < s; ++i) co[i] = rev[le[cd[i] - 1]++] >>> (15 - cd[i]); } return co; }); // fixed length tree var flt = new u8(288); for (var i = 0; i < 144; ++i) flt[i] = 8; for (var i = 144; i < 256; ++i) flt[i] = 9; for (var i = 256; i < 280; ++i) flt[i] = 7; for (var i = 280; i < 288; ++i) flt[i] = 8; // fixed distance tree var fdt = new u8(32); for (var i = 0; i < 32; ++i) fdt[i] = 5; // fixed length map var flm = /*#__PURE__*/ hMap(flt, 9, 0), flrm = /*#__PURE__*/ hMap(flt, 9, 1); // fixed distance map var fdm = /*#__PURE__*/ hMap(fdt, 5, 0), fdrm = /*#__PURE__*/ hMap(fdt, 5, 1); // find max of array var max = function (a) { var m = a[0]; for (var i = 1; i < a.length; ++i) { if (a[i] > m) m = a[i]; } return m; }; // read d, starting at bit p and mask with m var bits = function (d, p, m) { var o = (p / 8) >> 0; return ((d[o] | (d[o + 1] << 8)) >>> (p & 7)) & m; }; // read d, starting at bit p continuing for at least 16 bits var bits16 = function (d, p) { var o = (p / 8) >> 0; return ((d[o] | (d[o + 1] << 8) | (d[o + 2] << 16)) >>> (p & 7)); }; // get end of byte var shft = function (p) { return ((p / 8) >> 0) + (p & 7 && 1); }; // typed array slice - allows garbage collector to free original reference, // while being more compatible than .slice var slc = function (v, s, e) { if (s == null || s < 0) s = 0; if (e == null || e > v.length) e = v.length; // can't use .constructor in case user-supplied var n = new (v instanceof u16 ? u16 : v instanceof u32 ? u32 : u8)(e - s); n.set(v.subarray(s, e)); return n; }; // expands raw DEFLATE data var inflt = function (dat, buf, st) { // source length var sl = dat.length; // have to estimate size var noBuf = !buf || st; // no state var noSt = !st || st.i; if (!st) st = {}; // Assumes roughly 33% compression ratio average if (!buf) buf = new u8(sl * 3); // ensure buffer can fit at least l elements var cbuf = function (l) { var bl = buf.length; // need to increase size to fit if (l > bl) { // Double or set to necessary, whichever is greater var nbuf = new u8(Math.max(bl * 2, l)); nbuf.set(buf); buf = nbuf; } }; // last chunk bitpos bytes var final = st.f || 0, pos = st.p || 0, bt = st.b || 0, lm = st.l, dm = st.d, lbt = st.m, dbt = st.n; // total bits var tbts = sl * 8; do { if (!lm) { // BFINAL - this is only 1 when last chunk is next st.f = final = bits(dat, pos, 1); // type: 0 = no compression, 1 = fixed huffman, 2 = dynamic huffman var type = bits(dat, pos + 1, 3); pos += 3; if (!type) { // go to end of byte boundary var s = shft(pos) + 4, l = dat[s - 4] | (dat[s - 3] << 8), t = s + l; if (t > sl) { if (noSt) throw 'unexpected EOF'; break; } // ensure size if (noBuf) cbuf(bt + l); // Copy over uncompressed data buf.set(dat.subarray(s, t), bt); // Get new bitpos, update byte count st.b = bt += l, st.p = pos = t * 8; continue; } else if (type == 1) lm = flrm, dm = fdrm, lbt = 9, dbt = 5; else if (type == 2) { // literal lengths var hLit = bits(dat, pos, 31) + 257, hcLen = bits(dat, pos + 10, 15) + 4; var tl = hLit + bits(dat, pos + 5, 31) + 1; pos += 14; // length+distance tree var ldt = new u8(tl); // code length tree var clt = new u8(19); for (var i = 0; i < hcLen; ++i) { // use index map to get real code clt[clim[i]] = bits(dat, pos + i * 3, 7); } pos += hcLen * 3; // code lengths bits var clb = max(clt), clbmsk = (1 << clb) - 1; if (!noSt && pos + tl * (clb + 7) > tbts) break; // code lengths map var clm = hMap(clt, clb, 1); for (var i = 0; i < tl;) { var r = clm[bits(dat, pos, clbmsk)]; // bits read pos += r & 15; // symbol var s = r >>> 4; // code length to copy if (s < 16) { ldt[i++] = s; } else { // copy count var c = 0, n = 0; if (s == 16) n = 3 + bits(dat, pos, 3), pos += 2, c = ldt[i - 1]; else if (s == 17) n = 3 + bits(dat, pos, 7), pos += 3; else if (s == 18) n = 11 + bits(dat, pos, 127), pos += 7; while (n--) ldt[i++] = c; } } // length tree distance tree var lt = ldt.subarray(0, hLit), dt = ldt.subarray(hLit); // max length bits lbt = max(lt); // max dist bits dbt = max(dt); lm = hMap(lt, lbt, 1); dm = hMap(dt, dbt, 1); } else throw 'invalid block type'; if (pos > tbts) throw 'unexpected EOF'; } // Make sure the buffer can hold this + the largest possible addition // Maximum chunk size (practically, theoretically infinite) is 2^17; if (noBuf) cbuf(bt + 131072); var lms = (1 << lbt) - 1, dms = (1 << dbt) - 1; var mxa = lbt + dbt + 18; while (noSt || pos + mxa < tbts) { // bits read, code var c = lm[bits16(dat, pos) & lms], sym = c >>> 4; pos += c & 15; if (pos > tbts) throw 'unexpected EOF'; if (!c) throw 'invalid length/literal'; if (sym < 256) buf[bt++] = sym; else if (sym == 256) { lm = null; break; } else { var add = sym - 254; // no extra bits needed if less if (sym > 264) { // index var i = sym - 257, b = fleb[i]; add = bits(dat, pos, (1 << b) - 1) + fl[i]; pos += b; } // dist var d = dm[bits16(dat, pos) & dms], dsym = d >>> 4; if (!d) throw 'invalid distance'; pos += d & 15; var dt = fd[dsym]; if (dsym > 3) { var b = fdeb[dsym]; dt += bits16(dat, pos) & ((1 << b) - 1), pos += b; } if (pos > tbts) throw 'unexpected EOF'; if (noBuf) cbuf(bt + 131072); var end = bt + add; for (; bt < end; bt += 4) { buf[bt] = buf[bt - dt]; buf[bt + 1] = buf[bt + 1 - dt]; buf[bt + 2] = buf[bt + 2 - dt]; buf[bt + 3] = buf[bt + 3 - dt]; } bt = end; } } st.l = lm, st.p = pos, st.b = bt; if (lm) final = 1, st.m = lbt, st.d = dm, st.n = dbt; } while (!final); return bt == buf.length ? buf : slc(buf, 0, bt); }; // starting at p, write the minimum number of bits that can hold v to d var wbits = function (d, p, v) { v <<= p & 7; var o = (p / 8) >> 0; d[o] |= v; d[o + 1] |= v >>> 8; }; // starting at p, write the minimum number of bits (>8) that can hold v to d var wbits16 = function (d, p, v) { v <<= p & 7; var o = (p / 8) >> 0; d[o] |= v; d[o + 1] |= v >>> 8; d[o + 2] |= v >>> 16; }; // creates code lengths from a frequency table var hTree = function (d, mb) { // Need extra info to make a tree var t = []; for (var i = 0; i < d.length; ++i) { if (d[i]) t.push({ s: i, f: d[i] }); } var s = t.length; var t2 = t.slice(); if (!s) return [new u8(0), 0]; if (s == 1) { var v = new u8(t[0].s + 1); v[t[0].s] = 1; return [v, 1]; } t.sort(function (a, b) { return a.f - b.f; }); // after i2 reaches last ind, will be stopped // freq must be greater than largest possible number of symbols t.push({ s: -1, f: 25001 }); var l = t[0], r = t[1], i0 = 0, i1 = 1, i2 = 2; t[0] = { s: -1, f: l.f + r.f, l: l, r: r }; // efficient algorithm from UZIP.js // i0 is lookbehind, i2 is lookahead - after processing two low-freq // symbols that combined have high freq, will start processing i2 (high-freq, // non-composite) symbols instead // see https://reddit.com/r/photopea/comments/ikekht/uzipjs_questions/ while (i1 != s - 1) { l = t[t[i0].f < t[i2].f ? i0++ : i2++]; r = t[i0 != i1 && t[i0].f < t[i2].f ? i0++ : i2++]; t[i1++] = { s: -1, f: l.f + r.f, l: l, r: r }; } var maxSym = t2[0].s; for (var i = 1; i < s; ++i) { if (t2[i].s > maxSym) maxSym = t2[i].s; } // code lengths var tr = new u16(maxSym + 1); // max bits in tree var mbt = ln(t[i1 - 1], tr, 0); if (mbt > mb) { // more algorithms from UZIP.js // TODO: find out how this code works (debt) // ind debt var i = 0, dt = 0; // left cost var lft = mbt - mb, cst = 1 << lft; t2.sort(function (a, b) { return tr[b.s] - tr[a.s] || a.f - b.f; }); for (; i < s; ++i) { var i2_1 = t2[i].s; if (tr[i2_1] > mb) { dt += cst - (1 << (mbt - tr[i2_1])); tr[i2_1] = mb; } else break; } dt >>>= lft; while (dt > 0) { var i2_2 = t2[i].s; if (tr[i2_2] < mb) dt -= 1 << (mb - tr[i2_2]++ - 1); else ++i; } for (; i >= 0 && dt; --i) { var i2_3 = t2[i].s; if (tr[i2_3] == mb) { --tr[i2_3]; ++dt; } } mbt = mb; } return [new u8(tr), mbt]; }; // get the max length and assign length codes var ln = function (n, l, d) { return n.s == -1 ? Math.max(ln(n.l, l, d + 1), ln(n.r, l, d + 1)) : (l[n.s] = d); }; // length codes generation var lc = function (c) { var s = c.length; // Note that the semicolon was intentional while (s && !c[--s]) ; var cl = new u16(++s); // ind num streak var cli = 0, cln = c[0], cls = 1; var w = function (v) { cl[cli++] = v; }; for (var i = 1; i <= s; ++i) { if (c[i] == cln && i != s) ++cls; else { if (!cln && cls > 2) { for (; cls > 138; cls -= 138) w(32754); if (cls > 2) { w(cls > 10 ? ((cls - 11) << 5) | 28690 : ((cls - 3) << 5) | 12305); cls = 0; } } else if (cls > 3) { w(cln), --cls; for (; cls > 6; cls -= 6) w(8304); if (cls > 2) w(((cls - 3) << 5) | 8208), cls = 0; } while (cls--) w(cln); cls = 1; cln = c[i]; } } return [cl.subarray(0, cli), s]; }; // calculate the length of output from tree, code lengths var clen = function (cf, cl) { var l = 0; for (var i = 0; i < cl.length; ++i) l += cf[i] * cl[i]; return l; }; // writes a fixed block // returns the new bit pos var wfblk = function (out, pos, dat) { // no need to write 00 as type: TypedArray defaults to 0 var s = dat.length; var o = shft(pos + 2); out[o] = s & 255; out[o + 1] = s >>> 8; out[o + 2] = out[o] ^ 255; out[o + 3] = out[o + 1] ^ 255; for (var i = 0; i < s; ++i) out[o + i + 4] = dat[i]; return (o + 4 + s) * 8; }; // writes a block var wblk = function (dat, out, final, syms, lf, df, eb, li, bs, bl, p) { wbits(out, p++, final); ++lf[256]; var _a = hTree(lf, 15), dlt = _a[0], mlb = _a[1]; var _b = hTree(df, 15), ddt = _b[0], mdb = _b[1]; var _c = lc(dlt), lclt = _c[0], nlc = _c[1]; var _d = lc(ddt), lcdt = _d[0], ndc = _d[1]; var lcfreq = new u16(19); for (var i = 0; i < lclt.length; ++i) lcfreq[lclt[i] & 31]++; for (var i = 0; i < lcdt.length; ++i) lcfreq[lcdt[i] & 31]++; var _e = hTree(lcfreq, 7), lct = _e[0], mlcb = _e[1]; var nlcc = 19; for (; nlcc > 4 && !lct[clim[nlcc - 1]]; --nlcc) ; var flen = (bl + 5) << 3; var ftlen = clen(lf, flt) + clen(df, fdt) + eb; var dtlen = clen(lf, dlt) + clen(df, ddt) + eb + 14 + 3 * nlcc + clen(lcfreq, lct) + (2 * lcfreq[16] + 3 * lcfreq[17] + 7 * lcfreq[18]); if (flen <= ftlen && flen <= dtlen) return wfblk(out, p, dat.subarray(bs, bs + bl)); var lm, ll, dm, dl; wbits(out, p, 1 + (dtlen < ftlen)), p += 2; if (dtlen < ftlen) { lm = hMap(dlt, mlb, 0), ll = dlt, dm = hMap(ddt, mdb, 0), dl = ddt; var llm = hMap(lct, mlcb, 0); wbits(out, p, nlc - 257); wbits(out, p + 5, ndc - 1); wbits(out, p + 10, nlcc - 4); p += 14; for (var i = 0; i < nlcc; ++i) wbits(out, p + 3 * i, lct[clim[i]]); p += 3 * nlcc; var lcts = [lclt, lcdt]; for (var it = 0; it < 2; ++it) { var clct = lcts[it]; for (var i = 0; i < clct.length; ++i) { var len = clct[i] & 31; wbits(out, p, llm[len]), p += lct[len]; if (len > 15) wbits(out, p, (clct[i] >>> 5) & 127), p += clct[i] >>> 12; } } } else { lm = flm, ll = flt, dm = fdm, dl = fdt; } for (var i = 0; i < li; ++i) { if (syms[i] > 255) { var len = (syms[i] >>> 18) & 31; wbits16(out, p, lm[len + 257]), p += ll[len + 257]; if (len > 7) wbits(out, p, (syms[i] >>> 23) & 31), p += fleb[len]; var dst = syms[i] & 31; wbits16(out, p, dm[dst]), p += dl[dst]; if (dst > 3) wbits16(out, p, (syms[i] >>> 5) & 8191), p += fdeb[dst]; } else { wbits16(out, p, lm[syms[i]]), p += ll[syms[i]]; } } wbits16(out, p, lm[256]); return p + ll[256]; }; // deflate options (nice << 13) | chain var deo = /*#__PURE__*/ new u32([65540, 131080, 131088, 131104, 262176, 1048704, 1048832, 2114560, 2117632]); // empty var et = /*#__PURE__*/ new u8(0); // compresses data into a raw DEFLATE buffer var dflt = function (dat, lvl, plvl, pre, post, lst) { var s = dat.length; var o = new u8(pre + s + 5 * (1 + Math.floor(s / 7000)) + post); // writing to this writes to the output buffer var w = o.subarray(pre, o.length - post); var pos = 0; if (!lvl || s < 8) { for (var i = 0; i <= s; i += 65535) { // end var e = i + 65535; if (e < s) { // write full block pos = wfblk(w, pos, dat.subarray(i, e)); } else { // write final block w[i] = lst; pos = wfblk(w, pos, dat.subarray(i, s)); } } } else { var opt = deo[lvl - 1]; var n = opt >>> 13, c = opt & 8191; var msk_1 = (1 << plvl) - 1; // prev 2-byte val map curr 2-byte val map var prev = new u16(32768), head = new u16(msk_1 + 1); var bs1_1 = Math.ceil(plvl / 3), bs2_1 = 2 * bs1_1; var hsh = function (i) { return (dat[i] ^ (dat[i + 1] << bs1_1) ^ (dat[i + 2] << bs2_1)) & msk_1; }; // 24576 is an arbitrary number of maximum symbols per block // 424 buffer for last block var syms = new u32(25000); // length/literal freq distance freq var lf = new u16(288), df = new u16(32); // l/lcnt exbits index l/lind waitdx bitpos var lc_1 = 0, eb = 0, i = 0, li = 0, wi = 0, bs = 0; for (; i < s; ++i) { // hash value var hv = hsh(i); // index mod 32768 var imod = i & 32767; // previous index with this value var pimod = head[hv]; prev[imod] = pimod; head[hv] = imod; // We always should modify head and prev, but only add symbols if // this data is not yet processed ("wait" for wait index) if (wi <= i) { // bytes remaining var rem = s - i; if ((lc_1 > 7000 || li > 24576) && rem > 423) { pos = wblk(dat, w, 0, syms, lf, df, eb, li, bs, i - bs, pos); li = lc_1 = eb = 0, bs = i; for (var j = 0; j < 286; ++j) lf[j] = 0; for (var j = 0; j < 30; ++j) df[j] = 0; } // len dist chain var l = 2, d = 0, ch_1 = c, dif = (imod - pimod) & 32767; if (rem > 2 && hv == hsh(i - dif)) { var maxn = Math.min(n, rem) - 1; var maxd = Math.min(32767, i); // max possible length // not capped at dif because decompressors implement "rolling" index population var ml = Math.min(258, rem); while (dif <= maxd && --ch_1 && imod != pimod) { if (dat[i + l] == dat[i + l - dif]) { var nl = 0; for (; nl < ml && dat[i + nl] == dat[i + nl - dif]; ++nl) ; if (nl > l) { l = nl, d = dif; // break out early when we reach "nice" (we are satisfied enough) if (nl > maxn) break; // now, find the rarest 2-byte sequence within this // length of literals and search for that instead. // Much faster than just using the start var mmd = Math.min(dif, nl - 2); var md = 0; for (var j = 0; j < mmd; ++j) { var ti = (i - dif + j + 32768) & 32767; var pti = prev[ti]; var cd = (ti - pti + 32768) & 32767; if (cd > md) md = cd, pimod = ti; } } } // check the previous match imod = pimod, pimod = prev[imod]; dif += (imod - pimod + 32768) & 32767; } } // d will be nonzero only when a match was found if (d) { // store both dist and len data in one Uint32 // Make sure this is recognized as a len/dist with 28th bit (2^28) syms[li++] = 268435456 | (revfl[l] << 18) | revfd[d]; var lin = revfl[l] & 31, din = revfd[d] & 31; eb += fleb[lin] + fdeb[din]; ++lf[257 + lin]; ++df[din]; wi = i + l; ++lc_1; } else { syms[li++] = dat[i]; ++lf[dat[i]]; } } } pos = wblk(dat, w, lst, syms, lf, df, eb, li, bs, i - bs, pos); // this is the easiest way to avoid needing to maintain state if (!lst) pos = wfblk(w, pos, et); } return slc(o, 0, pre + shft(pos) + post); }; // CRC32 table var crct = /*#__PURE__*/ (function () { var t = new u32(256); for (var i = 0; i < 256; ++i) { var c = i, k = 9; while (--k) c = ((c & 1) && 0xEDB88320) ^ (c >>> 1); t[i] = c; } return t; })(); // CRC32 var crc = function () { var c = 0xFFFFFFFF; return { p: function (d) { // closures have awful performance var cr = c; for (var i = 0; i < d.length; ++i) cr = crct[(cr & 255) ^ d[i]] ^ (cr >>> 8); c = cr; }, d: function () { return c ^ 0xFFFFFFFF; } }; }; // Alder32 var adler = function () { var a = 1, b = 0; return { p: function (d) { // closures have awful performance var n = a, m = b; var l = d.length; for (var i = 0; i != l;) { var e = Math.min(i + 5552, l); for (; i < e; ++i) n += d[i], m += n; n %= 65521, m %= 65521; } a = n, b = m; }, d: function () { return ((a >>> 8) << 16 | (b & 255) << 8 | (b >>> 8)) + ((a & 255) << 23) * 2; } }; }; ; // deflate with opts var dopt = function (dat, opt, pre, post, st) { return dflt(dat, opt.level == null ? 6 : opt.level, opt.mem == null ? Math.ceil(Math.max(8, Math.min(13, Math.log(dat.length))) * 1.5) : (12 + opt.mem), pre, post, !st); }; // Walmart object spread var mrg = function (a, b) { var o = {}; for (var k in a) o[k] = a[k]; for (var k in b) o[k] = b[k]; return o; }; // worker clone // This is possibly the craziest part of the entire codebase, despite how simple it may seem. // The only parameter to this function is a closure that returns an array of variables outside of the function scope. // We're going to try to figure out the variable names used in the closure as strings because that is crucial for workerization. // We will return an object mapping of true variable name to value (basically, the current scope as a JS object). // The reason we can't just use the original variable names is minifiers mangling the toplevel scope. // This took me three weeks to figure out how to do. var wcln = function (fn, fnStr, td) { var dt = fn(); var st = fn.toString(); var ks = st.slice(st.indexOf('[') + 1, st.lastIndexOf(']')).replace(/ /g, '').split(','); for (var i = 0; i < dt.length; ++i) { var v = dt[i], k = ks[i]; if (typeof v == 'function') { fnStr += ';' + k + '='; var st_1 = v.toString(); if (v.prototype) { // for global objects if (st_1.indexOf('[native code]') != -1) { var spInd = st_1.indexOf(' ', 8) + 1; fnStr += st_1.slice(spInd, st_1.indexOf('(', spInd)); } else { fnStr += st_1; for (var t in v.prototype) fnStr += ';' + k + '.prototype.' + t + '=' + v.prototype[t].toString(); } } else fnStr += st_1; } else td[k] = v; } return [fnStr, td]; }; var ch = []; // clone bufs var cbfs = function (v) { var tl = []; for (var k in v) { if (v[k] instanceof u8 || v[k] instanceof u16 || v[k] instanceof u32) tl.push((v[k] = new v[k].constructor(v[k])).buffer); } return tl; }; // use a worker to execute code var wrkr = function (fns, init, id, cb) { var _a; if (!ch[id]) { var fnStr = '', td_1 = {}, m = fns.length - 1; for (var i = 0; i < m; ++i) _a = wcln(fns[i], fnStr, td_1), fnStr = _a[0], td_1 = _a[1]; ch[id] = wcln(fns[m], fnStr, td_1); } var td = mrg({}, ch[id][1]); return wk(ch[id][0] + ';onmessage=function(e){for(var k in e.data)self[k]=e.data[k];onmessage=' + init.toString() + '}', id, td, cbfs(td), cb); }; // base async inflate fn var bInflt = function () { return [u8, u16, u32, fleb, fdeb, clim, fl, fd, flrm, fdrm, rev, hMap, max, bits, bits16, shft, slc, inflt, inflateSync, pbf, gu8]; }; var bDflt = function () { return [u8, u16, u32, fleb, fdeb, clim, revfl, revfd, flm, flt, fdm, fdt, rev, deo, et, hMap, wbits, wbits16, hTree, ln, lc, clen, wfblk, wblk, shft, slc, dflt, dopt, deflateSync, pbf]; }; // gzip extra var gze = function () { return [gzh, gzhl, wbytes, crc, crct]; }; // gunzip extra var guze = function () { return [gzs, gzl]; }; // zlib extra var zle = function () { return [zlh, wbytes, adler]; }; // unzlib extra var zule = function () { return [zlv]; }; // post buf var pbf = function (msg) { return postMessage(msg, [msg.buffer]); }; // get u8 var gu8 = function (o) { return o && o.size && new u8(o.size); }; // async helper var cbify = function (dat, opts, fns, init, id, cb) { var w = wrkr(fns, init, id, function (err, dat) { w.terminate(); cb(err, dat); }); if (!opts.consume) dat = new u8(dat); w.postMessage([dat, opts], [dat.buffer]); return function () { w.terminate(); }; }; // auto stream var astrm = function (strm) { strm.ondata = function (dat, final) { return postMessage([dat, final], [dat.buffer]); }; return function (ev) { return strm.push(ev.data[0], ev.data[1]); }; }; // async stream attach var astrmify = function (fns, strm, opts, init, id) { var t; var w = wrkr(fns, init, id, function (err, dat) { if (err) w.terminate(), strm.ondata.call(strm, err); else { if (dat[1]) w.terminate(); strm.ondata.call(strm, err, dat[0], dat[1]); } }); w.postMessage(opts); strm.push = function (d, f) { if (t) throw 'stream finished'; if (!strm.ondata) throw 'no stream handler'; w.postMessage([d, t = f], [d.buffer]); }; strm.terminate = function () { w.terminate(); }; }; // read 2 bytes var b2 = function (d, b) { return d[b] | (d[b + 1] << 8); }; // read 4 bytes var b4 = function (d, b) { return (d[b] | (d[b + 1] << 8) | (d[b + 2] << 16)) + (d[b + 3] << 23) * 2; }; // write bytes var wbytes = function (d, b, v) { for (; v; ++b) d[b] = v, v >>>= 8; }; // gzip header var gzh = function (c, o) { var fn = o.filename; c[0] = 31, c[1] = 139, c[2] = 8, c[8] = o.level < 2 ? 4 : o.level == 9 ? 2 : 0, c[9] = 3; // assume Unix if (o.mtime != 0) wbytes(c, 4, Math.floor(new Date(o.mtime || Date.now()) / 1000)); if (fn) { c[3] = 8; for (var i = 0; i <= fn.length; ++i) c[i + 10] = fn.charCodeAt(i); } }; // gzip footer: -8 to -4 = CRC, -4 to -0 is length // gzip start var gzs = function (d) { if (d[0] != 31 || d[1] != 139 || d[2] != 8) throw 'invalid gzip data'; var flg = d[3]; var st = 10; if (flg & 4) st += d[10] | (d[11] << 8) + 2; for (var zs = (flg >> 3 & 1) + (flg >> 4 & 1); zs > 0; zs -= !d[st++]) ; return st + (flg & 2); }; // gzip length var gzl = function (d) { var l = d.length; return (d[l - 4] | d[l - 3] << 8 | d[l - 2] << 16) + (2 * (d[l - 1] << 23)); }; // gzip header length var gzhl = function (o) { return 10 + ((o.filename && (o.filename.length + 1)) || 0); }; // zlib header var zlh = function (c, o) { var lv = o.level, fl = lv == 0 ? 0 : lv < 6 ? 1 : lv == 9 ? 3 : 2; c[0] = 120, c[1] = (fl << 6) | (fl ? (32 - 2 * fl) : 1); }; // zlib valid var zlv = function (d) { if ((d[0] & 15) != 8 || (d[0] >>> 4) > 7 || ((d[0] << 8 | d[1]) % 31)) throw 'invalid zlib data'; if (d[1] & 32) throw 'invalid zlib data: preset dictionaries not supported'; }; function AsyncCmpStrm(opts, cb) { if (!cb && typeof opts == 'function') cb = opts, opts = {}; this.ondata = cb; return opts; } // zlib footer: -4 to -0 is Adler32 /** * Streaming DEFLATE compression */ var Deflate = /*#__PURE__*/ (function () { function Deflate(opts, cb) { if (!cb && typeof opts == 'function') cb = opts, opts = {}; this.ondata = cb; this.o = opts || {}; } Deflate.prototype.p = function (c, f) { this.ondata(dopt(c, this.o, 0, 0, !f), f); }; /** * Pushes a chunk to be deflated * @param chunk The chunk to push * @param final Whether this is the last chunk */ Deflate.prototype.push = function (chunk, final) { if (this.d) throw 'stream finished'; if (!this.ondata) throw 'no stream handler'; this.d = final; this.p(chunk, final || false); }; return Deflate; }()); export { Deflate }; /** * Asynchronous streaming DEFLATE compression */ var AsyncDeflate = /*#__PURE__*/ (function () { function AsyncDeflate(opts, cb) { astrmify([ bDflt, function () { return [astrm, Deflate]; } ], this, AsyncCmpStrm.call(this, opts, cb), function (ev) { var strm = new Deflate(ev.data); onmessage = astrm(strm); }, 6); } return AsyncDeflate; }()); export { AsyncDeflate }; export function deflate(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return cbify(data, opts, [ bDflt, ], function (ev) { return pbf(deflateSync(ev.data[0], ev.data[1])); }, 0, cb); } /** * Compresses data with DEFLATE without any wrapper * @param data The data to compress * @param opts The compression options * @returns The deflated version of the data */ export function deflateSync(data, opts) { if (opts === void 0) { opts = {}; } return dopt(data, opts, 0, 0); } /** * Streaming DEFLATE decompression */ var Inflate = /*#__PURE__*/ (function () { /** * Creates an inflation stream * @param cb The callback to call whenever data is inflated */ function Inflate(cb) { this.s = {}; this.p = new u8(0); this.ondata = cb; } Inflate.prototype.e = function (c) { if (this.d) throw 'stream finished'; if (!this.ondata) throw 'no stream handler'; var l = this.p.length; var n = new u8(l + c.length); n.set(this.p), n.set(c, l), this.p = n; }; Inflate.prototype.c = function (final) { this.d = this.s.i = final || false; var bts = this.s.b; var dt = inflt(this.p, this.o, this.s); this.ondata(slc(dt, bts, this.s.b), this.d); this.o = slc(dt, this.s.b - 32768), this.s.b = this.o.length; this.p = slc(this.p, (this.s.p / 8) >> 0), this.s.p &= 7; }; /** * Pushes a chunk to be inflated * @param chunk The chunk to push * @param final Whether this is the final chunk */ Inflate.prototype.push = function (chunk, final) { this.e(chunk), this.c(final); }; return Inflate; }()); export { Inflate }; /** * Asynchronous streaming DEFLATE decompression */ var AsyncInflate = /*#__PURE__*/ (function () { /** * Creates an asynchronous inflation stream * @param cb The callback to call whenever data is deflated */ function AsyncInflate(cb) { this.ondata = cb; astrmify([ bInflt, function () { return [astrm, Inflate]; } ], this, 0, function () { var strm = new Inflate(); onmessage = astrm(strm); }, 7); } return AsyncInflate; }()); export { AsyncInflate }; export function inflate(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return cbify(data, opts, [ bInflt ], function (ev) { return pbf(inflateSync(ev.data[0], gu8(ev.data[1]))); }, 1, cb); } /** * Expands DEFLATE data with no wrapper * @param data The data to decompress * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length. * @returns The decompressed version of the data */ export function inflateSync(data, out) { return inflt(data, out); } // before you yell at me for not just using extends, my reason is that TS inheritance is hard to workerize. /** * Streaming GZIP compression */ var Gzip = /*#__PURE__*/ (function () { function Gzip(opts, cb) { this.c = crc(); this.l = 0; this.v = 1; Deflate.call(this, opts, cb); } /** * Pushes a chunk to be GZIPped * @param chunk The chunk to push * @param final Whether this is the last chunk */ Gzip.prototype.push = function (chunk, final) { Deflate.prototype.push.call(this, chunk, final); }; Gzip.prototype.p = function (c, f) { this.c.p(c); this.l += c.length; var raw = dopt(c, this.o, this.v && gzhl(this.o), f && 8, !f); if (this.v) gzh(raw, this.o), this.v = 0; if (f) wbytes(raw, raw.length - 8, this.c.d()), wbytes(raw, raw.length - 4, this.l); this.ondata(raw, f); }; return Gzip; }()); export { Gzip }; /** * Asynchronous streaming GZIP compression */ var AsyncGzip = /*#__PURE__*/ (function () { function AsyncGzip(opts, cb) { astrmify([ bDflt, gze, function () { return [astrm, Deflate, Gzip]; } ], this, AsyncCmpStrm.call(this, opts, cb), function (ev) { var strm = new Gzip(ev.data); onmessage = astrm(strm); }, 8); } return AsyncGzip; }()); export { AsyncGzip }; export function gzip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return cbify(data, opts, [ bDflt, gze, function () { return [gzipSync]; } ], function (ev) { return pbf(gzipSync(ev.data[0], ev.data[1])); }, 2, cb); } /** * Compresses data with GZIP * @param data The data to compress * @param opts The compression options * @returns The gzipped version of the data */ export function gzipSync(data, opts) { if (opts === void 0) { opts = {}; } var c = crc(), l = data.length; c.p(data); var d = dopt(data, opts, gzhl(opts), 8), s = d.length; return gzh(d, opts), wbytes(d, s - 8, c.d()), wbytes(d, s - 4, l), d; } /** * Streaming GZIP decompression */ var Gunzip = /*#__PURE__*/ (function () { /** * Creates a GUNZIP stream * @param cb The callback to call whenever data is inflated */ function Gunzip(cb) { this.v = 1; Inflate.call(this, cb); } /** * Pushes a chunk to be GUNZIPped * @param chunk The chunk to push * @param final Whether this is the last chunk */ Gunzip.prototype.push = function (chunk, final) { Inflate.prototype.e.call(this, chunk); if (this.v) { var s = gzs(this.p); if (s >= this.p.length && !final) return; this.p = this.p.subarray(s), this.v = 0; } if (final) { if (this.p.length < 8) throw 'invalid gzip stream'; this.p = this.p.subarray(0, -8); } // necessary to prevent TS from using the closure value // This allows for workerization to function correctly Inflate.prototype.c.call(this, final); }; return Gunzip; }()); export { Gunzip }; /** * Asynchronous streaming GZIP decompression */ var AsyncGunzip = /*#__PURE__*/ (function () { /** * Creates an asynchronous GUNZIP stream * @param cb The callback to call whenever data is deflated */ function AsyncGunzip(cb) { this.ondata = cb; astrmify([ bInflt, guze, function () { return [astrm, Inflate, Gunzip]; } ], this, 0, function () { var strm = new Gunzip(); onmessage = astrm(strm); }, 9); } return AsyncGunzip; }()); export { AsyncGunzip }; export function gunzip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return cbify(data, opts, [ bInflt, guze, function () { return [gunzipSync]; } ], function (ev) { return pbf(gunzipSync(ev.data[0])); }, 3, cb); } /** * Expands GZIP data * @param data The data to decompress * @param out Where to write the data. GZIP already encodes the output size, so providing this doesn't save memory. * @returns The decompressed version of the data */ export function gunzipSync(data, out) { return inflt(data.subarray(gzs(data), -8), out || new u8(gzl(data))); } /** * Streaming Zlib compression */ var Zlib = /*#__PURE__*/ (function () { function Zlib(opts, cb) { this.c = adler(); this.v = 1; Deflate.call(this, opts, cb); } /** * Pushes a chunk to be zlibbed * @param chunk The chunk to push * @param final Whether this is the last chunk */ Zlib.prototype.push = function (chunk, final) { Deflate.prototype.push.call(this, chunk, final); }; Zlib.prototype.p = function (c, f) { this.c.p(c); var raw = dopt(c, this.o, this.v && 2, f && 4, !f); if (this.v) zlh(raw, this.o), this.v = 0; if (f) wbytes(raw, raw.length - 4, this.c.d()); this.ondata(raw, f); }; return Zlib; }()); export { Zlib }; /** * Asynchronous streaming Zlib compression */ var AsyncZlib = /*#__PURE__*/ (function () { function AsyncZlib(opts, cb) { astrmify([ bDflt, zle, function () { return [astrm, Deflate, Zlib]; } ], this, AsyncCmpStrm.call(this, opts, cb), function (ev) { var strm = new Zlib(ev.data); onmessage = astrm(strm); }, 10); } return AsyncZlib; }()); export { AsyncZlib }; export function zlib(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return cbify(data, opts, [ bDflt, zle, function () { return [zlibSync]; } ], function (ev) { return pbf(zlibSync(ev.data[0], ev.data[1])); }, 4, cb); } /** * Compress data with Zlib * @param data The data to compress * @param opts The compression options * @returns The zlib-compressed version of the data */ export function zlibSync(data, opts) { if (opts === void 0) { opts = {}; } var a = adler(); a.p(data); var d = dopt(data, opts, 2, 4); return zlh(d, opts), wbytes(d, d.length - 4, a.d()), d; } /** * Streaming Zlib decompression */ var Unzlib = /*#__PURE__*/ (function () { /** * Creates a Zlib decompression stream * @param cb The callback to call whenever data is inflated */ function Unzlib(cb) { this.v = 1; Inflate.call(this, cb); } /** * Pushes a chunk to be unzlibbed * @param chunk The chunk to push * @param final Whether this is the last chunk */ Unzlib.prototype.push = function (chunk, final) { Inflate.prototype.e.call(this, chunk); if (this.v) { if (this.p.length < 2 && !final) return; this.p = this.p.subarray(2), this.v = 0; } if (final) { if (this.p.length < 4) throw 'invalid zlib stream'; this.p = this.p.subarray(0, -4); } // necessary to prevent TS from using the closure value // This allows for workerization to function correctly Inflate.prototype.c.call(this, final); }; return Unzlib; }()); export { Unzlib }; /** * Asynchronous streaming Zlib decompression */ var AsyncUnzlib = /*#__PURE__*/ (function () { /** * Creates an asynchronous Zlib decompression stream * @param cb The callback to call whenever data is deflated */ function AsyncUnzlib(cb) { this.ondata = cb; astrmify([ bInflt, zule, function () { return [astrm, Inflate, Unzlib]; } ], this, 0, function () { var strm = new Unzlib(); onmessage = astrm(strm); }, 11); } return AsyncUnzlib; }()); export { AsyncUnzlib }; export function unzlib(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return cbify(data, opts, [ bInflt, zule, function () { return [unzlibSync]; } ], function (ev) { return pbf(unzlibSync(ev.data[0], gu8(ev.data[1]))); }, 5, cb); } /** * Expands Zlib data * @param data The data to decompress * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length. * @returns The decompressed version of the data */ export function unzlibSync(data, out) { return inflt((zlv(data), data.subarray(2, -4)), out); } // Default algorithm for compression (used because having a known output size allows faster decompression) export { gzip as compress, AsyncGzip as AsyncCompress }; // Default algorithm for compression (used because having a known output size allows faster decompression) export { gzipSync as compressSync, Gzip as Compress }; /** * Streaming GZIP, Zlib, or raw DEFLATE decompression */ var Decompress = /*#__PURE__*/ (function () { /** * Creates a decompression stream * @param cb The callback to call whenever data is decompressed */ function Decompress(cb) { this.G = Gunzip; this.I = Inflate; this.Z = Unzlib; this.ondata = cb; } /** * Pushes a chunk to be decompressed * @param chunk The chunk to push * @param final Whether this is the last chunk */ Decompress.prototype.push = function (chunk, final) { if (!this.ondata) throw 'no stream handler'; if (!this.s) { if (this.p && this.p.length) { var n = new u8(this.p.length + chunk.length); n.set(this.p), n.set(chunk, this.p.length); } else this.p = chunk; if (this.p.length > 2) { var _this_1 = this; var cb = function () { _this_1.ondata.apply(_this_1, arguments); }; this.s = (this.p[0] == 31 && this.p[1] == 139 && this.p[2] == 8) ? new this.G(cb) : ((this.p[0] & 15) != 8 || (this.p[0] >> 4) > 7 || ((this.p[0] << 8 | this.p[1]) % 31)) ? new this.I(cb) : new this.Z(cb); this.s.push(this.p, final); this.p = null; } } else this.s.push(chunk, final); }; return Decompress; }()); export { Decompress }; /** * Asynchronous streaming GZIP, Zlib, or raw DEFLATE decompression */ var AsyncDecompress = /*#__PURE__*/ (function () { /** * Creates an asynchronous decompression stream * @param cb The callback to call whenever data is decompressed */ function AsyncDecompress(cb) { this.G = AsyncGunzip; this.I = AsyncInflate; this.Z = AsyncUnzlib; this.ondata = cb; } /** * Pushes a chunk to be decompressed * @param chunk The chunk to push * @param final Whether this is the last chunk */ AsyncDecompress.prototype.push = function (chunk, final) { Decompress.prototype.push.call(this, chunk, final); }; return AsyncDecompress; }()); export { AsyncDecompress }; export function decompress(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; return (data[0] == 31 && data[1] == 139 && data[2] == 8) ? gunzip(data, opts, cb) : ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31)) ? inflate(data, opts, cb) : unzlib(data, opts, cb); } /** * Expands compressed GZIP, Zlib, or raw DEFLATE data, automatically detecting the format * @param data The data to decompress * @param out Where to write the data. Saves memory if you know the decompressed size and provide an output buffer of that length. * @returns The decompressed version of the data */ export function decompressSync(data, out) { return (data[0] == 31 && data[1] == 139 && data[2] == 8) ? gunzipSync(data, out) : ((data[0] & 15) != 8 || (data[0] >> 4) > 7 || ((data[0] << 8 | data[1]) % 31)) ? inflateSync(data, out) : unzlibSync(data, out); } // flatten a directory structure var fltn = function (d, p, t, o) { for (var k in d) { var val = d[k], n = p + k; if (val instanceof u8) t[n] = [val, o]; else if (Array.isArray(val)) t[n] = [val[0], mrg(o, val[1])]; else fltn(val, n + '/', t, o); } }; /** * Converts a string into a Uint8Array for use with compression/decompression methods * @param str The string to encode * @param latin1 Whether or not to interpret the data as Latin-1. This should * not need to be true unless decoding a binary string. * @returns The string encoded in UTF-8/Latin-1 binary */ export function strToU8(str, latin1) { var l = str.length; if (!latin1 && typeof TextEncoder != 'undefined') return new TextEncoder().encode(str); var ar = new u8(str.length + (str.length >>> 1)); var ai = 0; var w = function (v) { ar[ai++] = v; }; for (var i = 0; i < l; ++i) { if (ai + 5 > ar.length) { var n = new u8(ai + 8 + ((l - i) << 1)); n.set(ar); ar = n; } var c = str.charCodeAt(i); if (c < 128 || latin1) w(c); else if (c < 2048) w(192 | (c >>> 6)), w(128 | (c & 63)); else if (c > 55295 && c < 57344) c = 65536 + (c & 1023 << 10) | (str.charCodeAt(++i) & 1023), w(240 | (c >>> 18)), w(128 | ((c >>> 12) & 63)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63)); else w(224 | (c >>> 12)), w(128 | ((c >>> 6) & 63)), w(128 | (c & 63)); } return slc(ar, 0, ai); } /** * Converts a Uint8Array to a string * @param dat The data to decode to string * @param latin1 Whether or not to interpret the data as Latin-1. This should * not need to be true unless encoding to binary string. * @returns The original UTF-8/Latin-1 string */ export function strFromU8(dat, latin1) { var r = ''; if (!latin1 && typeof TextDecoder != 'undefined') return new TextDecoder().decode(dat); for (var i = 0; i < dat.length;) { var c = dat[i++]; if (c < 128 || latin1) r += String.fromCharCode(c); else if (c < 224) r += String.fromCharCode((c & 31) << 6 | (dat[i++] & 63)); else if (c < 240) r += String.fromCharCode((c & 15) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)); else c = ((c & 15) << 18 | (dat[i++] & 63) << 12 | (dat[i++] & 63) << 6 | (dat[i++] & 63)) - 65536, r += String.fromCharCode(55296 | (c >> 10), 56320 | (c & 1023)); } return r; } ; // skip local zip header var slzh = function (d, b) { return b + 30 + b2(d, b + 26) + b2(d, b + 28); }; // read zip header var zh = function (d, b, z) { var fnl = b2(d, b + 28), fn = strFromU8(d.subarray(b + 46, b + 46 + fnl), !(b2(d, b + 8) & 2048)), es = b + 46 + fnl; var _a = z ? z64e(d, es) : [b4(d, b + 20), b4(d, b + 24), b4(d, b + 42)], sc = _a[0], su = _a[1], off = _a[2]; return [b2(d, b + 10), sc, su, fn, es + b2(d, b + 30) + b2(d, b + 32), off]; }; // read zip64 extra field var z64e = function (d, b) { for (; b2(d, b) != 1; b += 4 + b2(d, b + 2)) ; return [b4(d, b + 12), b4(d, b + 4), b4(d, b + 20)]; }; // write zip header var wzh = function (d, b, c, cmp, su, fn, u, o, ce, t) { var fl = fn.length, l = cmp.length; wbytes(d, b, ce != null ? 0x2014B50 : 0x4034B50), b += 4; if (ce != null) d[b] = 20, b += 2; d[b] = 20, b += 2; // spec compliance? what's that? d[b++] = (t == 8 && (o.level == 1 ? 6 : o.level < 6 ? 4 : o.level == 9 ? 2 : 0)), d[b++] = u && 8; d[b] = t, b += 2; var dt = new Date(o.mtime || Date.now()), y = dt.getFullYear() - 1980; if (y < 0 || y > 119) throw 'date not in range 1980-2099'; wbytes(d, b, ((y << 24) * 2) | ((dt.getMonth() + 1) << 21) | (dt.getDate() << 16) | (dt.getHours() << 11) | (dt.getMinutes() << 5) | (dt.getSeconds() >>> 1)); b += 4; wbytes(d, b, c); wbytes(d, b + 4, l); wbytes(d, b + 8, su); wbytes(d, b + 12, fl), b += 16; // skip extra field, comment if (ce != null) wbytes(d, b += 10, ce), b += 4; d.set(fn, b); b += fl; if (ce == null) d.set(cmp, b); }; // write zip footer (end of central directory) var wzf = function (o, b, c, d, e) { wbytes(o, b, 0x6054B50); // skip disk wbytes(o, b + 8, c); wbytes(o, b + 10, c); wbytes(o, b + 12, d); wbytes(o, b + 16, e); }; export function zip(data, opts, cb) { if (!cb) cb = opts, opts = {}; if (typeof cb != 'function') throw 'no callback'; var r = {}; fltn(data, '', r, opts); var k = Object.keys(r); var lft = k.length, o = 0, tot = 0; var slft = lft, files = new Array(lft); var term = []; var tAll = function () { for (var i = 0; i < term.length; ++i) term[i](); }; var cbf = function () { var out = new u8(tot + 22), oe = o, cdl = tot - o; tot = 0; for (var i = 0; i < slft; ++i) { var f = files[i]; try { wzh(out, tot, f.c, f.d, f.m, f.n, f.u, f.p, null, f.t); wzh(out, o, f.c, f.d, f.m, f.n, f.u, f.p, tot, f.t), o += 46 + f.n.length, tot += 30 + f.n.length + f.d.length; } catch (e) { return cb(e, null); } } wzf(out, o, files.length, cdl, oe); cb(null, out); }; if (!lft) cbf(); var _loop_1 = function (i) { var fn = k[i]; var _a = r[fn], file = _a[0], p = _a[1]; var c = crc(), m = file.length; c.p(file); var n = strToU8(fn), s = n.length; var t = p.level == 0 ? 0 : 8; var cbl = function (e, d) { if (e) { tAll(); cb(e, null); } else { var l = d.length; files[i] = { t: t, d: d, m: m, c: c.d(), u: fn.length != l, n: n, p: p }; o += 30 + s + l; tot += 76 + 2 * s + l; if (!--lft) cbf(); } }; if (n.length > 65535) cbl('filename too long', null); if (!t) cbl(null, file); else if (m < 160000) { try { cbl(null, deflateSync(file, p)); } catch (e) { cbl(e, null); } } else term.push(deflate(file, p, cbl)); }; // Cannot use lft because it can decrease for (var i = 0; i < slft; ++i) { _loop_1(i); } return tAll; } /** * Synchronously creates a ZIP file. Prefer using `zip` for better performance * with more than one file. * @param data The directory structure for the ZIP archive * @param opts The main options, merged with per-file options * @returns The generated ZIP archive */ export function zipSync(data, opts) { if (opts === void 0) { opts = {}; } var r = {}; var files = []; fltn(data, '', r, opts); var o = 0; var tot = 0; for (var fn in r) { var _a = r[fn], file = _a[0], p = _a[1]; var t = p.level == 0 ? 0 : 8; var n = strToU8(fn), s = n.length; if (n.length > 65535) throw 'filename too long'; var d = t ? deflateSync(file, p) : file, l = d.length; var c = crc(); c.p(file); files.push({ t: t, d: d, m: file.length, c: c.d(), u: fn.length != s, n: n, o: o, p: p }); o += 30 + s + l; tot += 76 + 2 * s + l; } var out = new u8(tot + 22), oe = o, cdl = tot - o; for (var i = 0; i < files.length; ++i) { var f = files[i]; wzh(out, f.o, f.c, f.d, f.m, f.n, f.u, f.p, null, f.t); wzh(out, o, f.c, f.d, f.m, f.n, f.u, f.p, f.o, f.t), o += 46 + f.n.length; } wzf(out, o, files.length, cdl, oe); return out; } /** * Asynchronously decompresses a ZIP archive * @param data The raw compressed ZIP file * @param cb The callback to call with the decompressed files * @returns A function that can be used to immediately terminate the unzipping */ export function unzip(data, cb) { if (typeof cb != 'function') throw 'no callback'; var term = []; var tAll = function () { for (var i = 0; i < term.length; ++i) term[i](); }; var files = {}; var e = data.length - 22; for (; b4(data, e) != 0x6054B50; --e) { if (!e || data.length - e > 65558) { cb('invalid zip file', null); return; } } ; var lft = b2(data, e + 8); if (!lft) cb(null, {}); var c = lft; var o = b4(data, e + 16); var z = o == 4294967295; if (z) { e = b4(data, e - 12); if (b4(data, e) != 0x6064B50) throw 'invalid zip file'; c = lft = b4(data, e + 32); o = b4(data, e + 48); } var _loop_2 = function (i) { var _a = zh(data, o, z), c_1 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off); o = no; var cbl = function (e, d) { if (e) { tAll(); cb(e, null); } else { files[fn] = d; if (!--lft) cb(null, files); } }; if (!c_1) cbl(null, slc(data, b, b + sc)); else if (c_1 == 8) { var infl = data.subarray(b, b + sc); if (sc < 320000) { try { cbl(null, inflateSync(infl, new u8(su))); } catch (e) { cbl(e, null); } } else term.push(inflate(infl, { size: su }, cbl)); } else cbl('unknown compression type ' + c_1, null); }; for (var i = 0; i < c; ++i) { _loop_2(i); } return tAll; } /** * Synchronously decompresses a ZIP archive. Prefer using `unzip` for better * performance with more than one file. * @param data The raw compressed ZIP file * @returns The decompressed files */ export function unzipSync(data) { var files = {}; var e = data.length - 22; for (; b4(data, e) != 0x6054B50; --e) { if (!e || data.length - e > 65558) throw 'invalid zip file'; } ; var c = b2(data, e + 8); if (!c) return {}; var o = b4(data, e + 16); var z = o == 4294967295; if (z) { e = b4(data, e - 12); if (b4(data, e) != 0x6064B50) throw 'invalid zip file'; c = b4(data, e + 32); o = b4(data, e + 48); } for (var i = 0; i < c; ++i) { var _a = zh(data, o, z), c_2 = _a[0], sc = _a[1], su = _a[2], fn = _a[3], no = _a[4], off = _a[5], b = slzh(data, off); o = no; if (!c_2) files[fn] = slc(data, b, b + sc); else if (c_2 == 8) files[fn] = inflateSync(data.subarray(b, b + sc), new u8(su)); else throw 'unknown compression type ' + c_2; } return files; }