Icard/angular-clarity-master(work.../node_modules/highcharts/modules/networkgraph.src.js

3211 lines
126 KiB
JavaScript

/**
* @license Highcharts JS v11.4.1 (2024-04-04)
*
* Force directed graph module
*
* (c) 2010-2024 Torstein Honsi
*
* License: www.highcharts.com/license
*/
(function (factory) {
if (typeof module === 'object' && module.exports) {
factory['default'] = factory;
module.exports = factory;
} else if (typeof define === 'function' && define.amd) {
define('highcharts/modules/networkgraph', ['highcharts'], function (Highcharts) {
factory(Highcharts);
factory.Highcharts = Highcharts;
return factory;
});
} else {
factory(typeof Highcharts !== 'undefined' ? Highcharts : undefined);
}
}(function (Highcharts) {
'use strict';
var _modules = Highcharts ? Highcharts._modules : {};
function _registerModule(obj, path, args, fn) {
if (!obj.hasOwnProperty(path)) {
obj[path] = fn.apply(null, args);
if (typeof CustomEvent === 'function') {
window.dispatchEvent(new CustomEvent(
'HighchartsModuleLoaded',
{ detail: { path: path, module: obj[path] } }
));
}
}
}
_registerModule(_modules, 'Series/DragNodesComposition.js', [_modules['Core/Globals.js'], _modules['Core/Utilities.js']], function (H, U) {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { composed } = H;
const { addEvent, pushUnique } = U;
/* *
*
* Functions
*
* */
/**
* @private
*/
function compose(ChartClass) {
if (pushUnique(composed, 'DragNodes')) {
addEvent(ChartClass, 'load', onChartLoad);
}
}
/**
* Draggable mode:
* @private
*/
function onChartLoad() {
const chart = this;
let mousedownUnbinder, mousemoveUnbinder, mouseupUnbinder;
if (chart.container) {
mousedownUnbinder = addEvent(chart.container, 'mousedown', (event) => {
const point = chart.hoverPoint;
if (point &&
point.series &&
point.series.hasDraggableNodes &&
point.series.options.draggable) {
point.series.onMouseDown(point, event);
mousemoveUnbinder = addEvent(chart.container, 'mousemove', (e) => (point &&
point.series &&
point.series.onMouseMove(point, e)));
mouseupUnbinder = addEvent(chart.container.ownerDocument, 'mouseup', (e) => {
mousemoveUnbinder();
mouseupUnbinder();
return point &&
point.series &&
point.series.onMouseUp(point, e);
});
}
});
}
addEvent(chart, 'destroy', function () {
mousedownUnbinder();
});
}
/**
* Mouse down action, initializing drag&drop mode.
*
* @private
* @param {Highcharts.Point} point
* The point that event occurred.
* @param {Highcharts.PointerEventObject} event
* Browser event, before normalization.
*/
function onMouseDown(point, event) {
const normalizedEvent = this.chart.pointer?.normalize(event) || event;
point.fixedPosition = {
chartX: normalizedEvent.chartX,
chartY: normalizedEvent.chartY,
plotX: point.plotX,
plotY: point.plotY
};
point.inDragMode = true;
}
/**
* Mouse move action during drag&drop.
*
* @private
*
* @param {Highcharts.Point} point
* The point that event occurred.
* @param {global.Event} event
* Browser event, before normalization.
*/
function onMouseMove(point, event) {
if (point.fixedPosition && point.inDragMode) {
const series = this, chart = series.chart, normalizedEvent = chart.pointer?.normalize(event) || event, diffX = point.fixedPosition.chartX - normalizedEvent.chartX, diffY = point.fixedPosition.chartY - normalizedEvent.chartY, graphLayoutsLookup = chart.graphLayoutsLookup;
let newPlotX, newPlotY;
// At least 5px to apply change (avoids simple click):
if (Math.abs(diffX) > 5 || Math.abs(diffY) > 5) {
newPlotX = point.fixedPosition.plotX - diffX;
newPlotY = point.fixedPosition.plotY - diffY;
if (chart.isInsidePlot(newPlotX, newPlotY)) {
point.plotX = newPlotX;
point.plotY = newPlotY;
point.hasDragged = true;
this.redrawHalo(point);
graphLayoutsLookup.forEach((layout) => {
layout.restartSimulation();
});
}
}
}
}
/**
* Mouse up action, finalizing drag&drop.
*
* @private
* @param {Highcharts.Point} point
* The point that event occurred.
*/
function onMouseUp(point) {
if (point.fixedPosition) {
if (point.hasDragged) {
if (this.layout.enableSimulation) {
this.layout.start();
}
else {
this.chart.redraw();
}
}
point.inDragMode = point.hasDragged = false;
if (!this.options.fixedDraggable) {
delete point.fixedPosition;
}
}
}
/**
* Redraw halo on mousemove during the drag&drop action.
*
* @private
* @param {Highcharts.Point} point
* The point that should show halo.
*/
function redrawHalo(point) {
if (point && this.halo) {
this.halo.attr({
d: point.haloPath(this.options.states.hover.halo.size)
});
}
}
/* *
*
* Default Export
*
* */
const DragNodesComposition = {
compose,
onMouseDown,
onMouseMove,
onMouseUp,
redrawHalo
};
return DragNodesComposition;
});
_registerModule(_modules, 'Series/GraphLayoutComposition.js', [_modules['Core/Animation/AnimationUtilities.js'], _modules['Core/Globals.js'], _modules['Core/Utilities.js']], function (A, H, U) {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { setAnimation } = A;
const { composed } = H;
const { addEvent, pushUnique } = U;
/* *
*
* Constants
*
* */
const integrations = {};
const layouts = {};
/* *
*
* Functions
*
* */
/**
* @private
*/
function compose(ChartClass) {
if (pushUnique(composed, 'GraphLayout')) {
addEvent(ChartClass, 'afterPrint', onChartAfterPrint);
addEvent(ChartClass, 'beforePrint', onChartBeforePrint);
addEvent(ChartClass, 'predraw', onChartPredraw);
addEvent(ChartClass, 'render', onChartRender);
}
}
/**
* Re-enable simulation after print.
* @private
*/
function onChartAfterPrint() {
if (this.graphLayoutsLookup) {
this.graphLayoutsLookup.forEach((layout) => {
// Return to default simulation
layout.updateSimulation();
});
this.redraw();
}
}
/**
* Disable simulation before print if enabled.
* @private
*/
function onChartBeforePrint() {
if (this.graphLayoutsLookup) {
this.graphLayoutsLookup.forEach((layout) => {
layout.updateSimulation(false);
});
this.redraw();
}
}
/**
* Clear previous layouts.
* @private
*/
function onChartPredraw() {
if (this.graphLayoutsLookup) {
this.graphLayoutsLookup.forEach((layout) => {
layout.stop();
});
}
}
/**
* @private
*/
function onChartRender() {
let systemsStable, afterRender = false;
const layoutStep = (layout) => {
if (layout.maxIterations-- &&
isFinite(layout.temperature) &&
!layout.isStable() &&
!layout.enableSimulation) {
// Hook similar to build-in addEvent, but instead of
// creating whole events logic, use just a function.
// It's faster which is important for rAF code.
// Used e.g. in packed-bubble series for bubble radius
// calculations
if (layout.beforeStep) {
layout.beforeStep();
}
layout.step();
systemsStable = false;
afterRender = true;
}
};
if (this.graphLayoutsLookup) {
setAnimation(false, this);
// Start simulation
this.graphLayoutsLookup.forEach((layout) => layout.start());
// Just one sync step, to run different layouts similar to
// async mode.
while (!systemsStable) {
systemsStable = true;
this.graphLayoutsLookup.forEach(layoutStep);
}
if (afterRender) {
this.series.forEach((series) => {
if (series && series.layout) {
series.render();
}
});
}
}
}
/* *
*
* Default Export
*
* */
const GraphLayoutComposition = {
compose,
integrations,
layouts
};
return GraphLayoutComposition;
});
_registerModule(_modules, 'Series/NodesComposition.js', [_modules['Core/Series/SeriesRegistry.js'], _modules['Core/Utilities.js']], function (SeriesRegistry, U) {
/* *
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { series: { prototype: seriesProto, prototype: { pointClass: { prototype: pointProto } } } } = SeriesRegistry;
const { defined, extend, find, merge, pick } = U;
/* *
*
* Composition
*
* */
var NodesComposition;
(function (NodesComposition) {
/* *
*
* Declarations
*
* */
/* *
*
* Functions
*
* */
/**
* @private
*/
function compose(PointClass, SeriesClass) {
const pointProto = PointClass.prototype, seriesProto = SeriesClass.prototype;
pointProto.setNodeState = setNodeState;
pointProto.setState = setNodeState;
pointProto.update = updateNode;
seriesProto.destroy = destroy;
seriesProto.setData = setData;
return SeriesClass;
}
NodesComposition.compose = compose;
/**
* Create a single node that holds information on incoming and outgoing
* links.
* @private
*/
function createNode(id) {
const PointClass = this.pointClass, findById = (nodes, id) => find(nodes, (node) => node.id === id);
let node = findById(this.nodes, id), options;
if (!node) {
options = this.options.nodes && findById(this.options.nodes, id);
const newNode = new PointClass(this, extend({
className: 'highcharts-node',
isNode: true,
id: id,
y: 1 // Pass isNull test
}, options));
newNode.linksTo = [];
newNode.linksFrom = [];
/**
* Return the largest sum of either the incoming or outgoing links.
* @private
*/
newNode.getSum = function () {
let sumTo = 0, sumFrom = 0;
newNode.linksTo.forEach((link) => {
sumTo += link.weight || 0;
});
newNode.linksFrom.forEach((link) => {
sumFrom += link.weight || 0;
});
return Math.max(sumTo, sumFrom);
};
/**
* Get the offset in weight values of a point/link.
* @private
*/
newNode.offset = function (point, coll) {
let offset = 0;
for (let i = 0; i < newNode[coll].length; i++) {
if (newNode[coll][i] === point) {
return offset;
}
offset += newNode[coll][i].weight;
}
};
// Return true if the node has a shape, otherwise all links are
// outgoing.
newNode.hasShape = function () {
let outgoing = 0;
newNode.linksTo.forEach((link) => {
if (link.outgoing) {
outgoing++;
}
});
return (!newNode.linksTo.length ||
outgoing !== newNode.linksTo.length);
};
newNode.index = this.nodes.push(newNode) - 1;
node = newNode;
}
node.formatPrefix = 'node';
// For use in formats
node.name = node.name || node.options.id || '';
// Mass is used in networkgraph:
node.mass = pick(
// Node:
node.options.mass, node.options.marker && node.options.marker.radius,
// Series:
this.options.marker && this.options.marker.radius,
// Default:
4);
return node;
}
NodesComposition.createNode = createNode;
/**
* Destroy all nodes and links.
* @private
*/
function destroy() {
// Nodes must also be destroyed (#8682, #9300)
this.data = []
.concat(this.points || [], this.nodes);
return seriesProto.destroy.apply(this, arguments);
}
NodesComposition.destroy = destroy;
/**
* Extend generatePoints by adding the nodes, which are Point objects but
* pushed to the this.nodes array.
* @private
*/
function generatePoints() {
const chart = this.chart, nodeLookup = {};
seriesProto.generatePoints.call(this);
if (!this.nodes) {
this.nodes = []; // List of Point-like node items
}
this.colorCounter = 0;
// Reset links from previous run
this.nodes.forEach((node) => {
node.linksFrom.length = 0;
node.linksTo.length = 0;
node.level = node.options.level;
});
// Create the node list and set up links
this.points.forEach((point) => {
if (defined(point.from)) {
if (!nodeLookup[point.from]) {
nodeLookup[point.from] = this.createNode(point.from);
}
nodeLookup[point.from].linksFrom.push(point);
point.fromNode = nodeLookup[point.from];
// Point color defaults to the fromNode's color
if (chart.styledMode) {
point.colorIndex = pick(point.options.colorIndex, nodeLookup[point.from].colorIndex);
}
else {
point.color =
point.options.color || nodeLookup[point.from].color;
}
}
if (defined(point.to)) {
if (!nodeLookup[point.to]) {
nodeLookup[point.to] = this.createNode(point.to);
}
nodeLookup[point.to].linksTo.push(point);
point.toNode = nodeLookup[point.to];
}
point.name = point.name || point.id; // For use in formats
}, this);
// Store lookup table for later use
this.nodeLookup = nodeLookup;
}
NodesComposition.generatePoints = generatePoints;
/**
* Destroy all nodes on setting new data
* @private
*/
function setData() {
if (this.nodes) {
this.nodes.forEach((node) => {
node.destroy();
});
this.nodes.length = 0;
}
seriesProto.setData.apply(this, arguments);
}
/**
* When hovering node, highlight all connected links. When hovering a link,
* highlight all connected nodes.
* @private
*/
function setNodeState(state) {
const args = arguments, others = this.isNode ? this.linksTo.concat(this.linksFrom) :
[this.fromNode, this.toNode];
if (state !== 'select') {
others.forEach((linkOrNode) => {
if (linkOrNode && linkOrNode.series) {
pointProto.setState.apply(linkOrNode, args);
if (!linkOrNode.isNode) {
if (linkOrNode.fromNode.graphic) {
pointProto.setState.apply(linkOrNode.fromNode, args);
}
if (linkOrNode.toNode && linkOrNode.toNode.graphic) {
pointProto.setState.apply(linkOrNode.toNode, args);
}
}
}
});
}
pointProto.setState.apply(this, args);
}
NodesComposition.setNodeState = setNodeState;
/**
* When updating a node, don't update `series.options.data`, but
* `series.options.nodes`
* @private
*/
function updateNode(options, redraw, animation, runEvent) {
const nodes = this.series.options.nodes, data = this.series.options.data, dataLength = data && data.length || 0, linkConfig = data && data[this.index];
pointProto.update.call(this, options, this.isNode ? false : redraw, // Hold the redraw for nodes
animation, runEvent);
if (this.isNode) {
// `this.index` refers to `series.nodes`, not `options.nodes` array
const nodeIndex = (nodes || [])
.reduce(// Array.findIndex needs a polyfill
(prevIndex, n, index) => (this.id === n.id ? index : prevIndex), -1),
// Merge old config with new config. New config is stored in
// options.data, because of default logic in point.update()
nodeConfig = merge(nodes && nodes[nodeIndex] || {}, data && data[this.index] || {});
// Restore link config
if (data) {
if (linkConfig) {
data[this.index] = linkConfig;
}
else {
// Remove node from config if there's more nodes than links
data.length = dataLength;
}
}
// Set node config
if (nodes) {
if (nodeIndex >= 0) {
nodes[nodeIndex] = nodeConfig;
}
else {
nodes.push(nodeConfig);
}
}
else {
this.series.options.nodes = [nodeConfig];
}
if (pick(redraw, true)) {
this.series.chart.redraw(animation);
}
}
}
NodesComposition.updateNode = updateNode;
})(NodesComposition || (NodesComposition = {}));
/* *
*
* Default Export
*
* */
return NodesComposition;
});
_registerModule(_modules, 'Series/Networkgraph/NetworkgraphPoint.js', [_modules['Series/NodesComposition.js'], _modules['Core/Series/SeriesRegistry.js'], _modules['Core/Utilities.js']], function (NodesComposition, SeriesRegistry, U) {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { series: { prototype: seriesProto, prototype: { pointClass: Point } } } = SeriesRegistry;
const { addEvent, css, defined, extend, pick } = U;
/* *
*
* Class
*
* */
class NetworkgraphPoint extends Point {
/* *
*
* Functions
*
* */
/**
* Destroy point. If it's a node, remove all links coming out of this
* node. Then remove point from the layout.
* @private
*/
destroy() {
if (this.isNode) {
this.linksFrom.concat(this.linksTo).forEach(function (link) {
// Removing multiple nodes at the same time
// will try to remove link between nodes twice
if (link.destroyElements) {
link.destroyElements();
}
});
}
this.series.layout.removeElementFromCollection(this, this.series.layout[this.isNode ? 'nodes' : 'links']);
return Point.prototype.destroy.apply(this, arguments);
}
/**
* Return degree of a node. If node has no connections, it still has
* deg=1.
* @private
*/
getDegree() {
const deg = this.isNode ?
this.linksFrom.length + this.linksTo.length :
0;
return deg === 0 ? 1 : deg;
}
/**
* Get presentational attributes of link connecting two nodes.
* @private
*/
getLinkAttributes() {
const linkOptions = this.series.options.link, pointOptions = this.options;
return {
'stroke-width': pick(pointOptions.width, linkOptions.width),
stroke: (pointOptions.color || linkOptions.color),
dashstyle: (pointOptions.dashStyle || linkOptions.dashStyle),
opacity: pick(pointOptions.opacity, linkOptions.opacity, 1)
};
}
/**
* Get link path connecting two nodes.
* @private
* @return {Array<Highcharts.SVGPathArray>}
* Path: `['M', x, y, 'L', x, y]`
*/
getLinkPath() {
let left = this.fromNode, right = this.toNode;
// Start always from left to the right node, to prevent rendering
// labels upside down
if (left.plotX > right.plotX) {
left = this.toNode;
right = this.fromNode;
}
return [
['M', left.plotX || 0, left.plotY || 0],
['L', right.plotX || 0, right.plotY || 0]
];
/*
IDEA: different link shapes?
return [
'M',
from.plotX,
from.plotY,
'Q',
(to.plotX + from.plotX) / 2,
(to.plotY + from.plotY) / 2 + 15,
to.plotX,
to.plotY
];*/
}
/**
* Get mass fraction applied on two nodes connected to each other. By
* default, when mass is equal to `1`, mass fraction for both nodes
* equal to 0.5.
* @private
* @return {Highcharts.Dictionary<number>}
* For example `{ fromNode: 0.5, toNode: 0.5 }`
*/
getMass() {
const m1 = this.fromNode.mass, m2 = this.toNode.mass, sum = m1 + m2;
return {
fromNode: 1 - m1 / sum,
toNode: 1 - m2 / sum
};
}
/**
* Basic `point.init()` and additional styles applied when
* `series.draggable` is enabled.
* @private
*/
constructor(series, options, x) {
super(series, options, x);
if (this.series.options.draggable &&
!this.series.chart.styledMode) {
addEvent(this, 'mouseOver', function () {
css(this.series.chart.container, { cursor: 'move' });
});
addEvent(this, 'mouseOut', function () {
css(this.series.chart.container, { cursor: 'default' });
});
}
}
/**
* @private
*/
isValid() {
return !this.isNode || defined(this.id);
}
/**
* Redraw link's path.
* @private
*/
redrawLink() {
const path = this.getLinkPath();
let attribs;
if (this.graphic) {
this.shapeArgs = {
d: path
};
if (!this.series.chart.styledMode) {
attribs = this.series.pointAttribs(this);
this.graphic.attr(attribs);
(this.dataLabels || []).forEach(function (label) {
if (label) {
label.attr({
opacity: attribs.opacity
});
}
});
}
this.graphic.animate(this.shapeArgs);
// Required for dataLabels
const start = path[0];
const end = path[1];
if (start[0] === 'M' && end[0] === 'L') {
this.plotX = (start[1] + end[1]) / 2;
this.plotY = (start[2] + end[2]) / 2;
}
}
}
/**
* Common method for removing points and nodes in networkgraph. To
* remove `link`, use `series.data[index].remove()`. To remove `node`
* with all connections, use `series.nodes[index].remove()`.
* @private
* @param {boolean} [redraw=true]
* Whether to redraw the chart or wait for an explicit call. When
* doing more operations on the chart, for example running
* `point.remove()` in a loop, it is best practice to set
* `redraw` to false and call `chart.redraw()` after.
* @param {boolean|Partial<Highcharts.AnimationOptionsObject>} [animation=false]
* Whether to apply animation, and optionally animation
* configuration.
*/
remove(redraw, animation) {
const point = this, series = point.series, nodesOptions = series.options.nodes || [];
let index, i = nodesOptions.length;
// For nodes, remove all connected links:
if (point.isNode) {
// Temporary disable series.points array, because
// Series.removePoint() modifies it
series.points = [];
// Remove link from all nodes collections:
[]
.concat(point.linksFrom)
.concat(point.linksTo)
.forEach(function (linkFromTo) {
// Incoming links
index = linkFromTo.fromNode.linksFrom.indexOf(linkFromTo);
if (index > -1) {
linkFromTo.fromNode.linksFrom.splice(index, 1);
}
// Outcoming links
index = linkFromTo.toNode.linksTo.indexOf(linkFromTo);
if (index > -1) {
linkFromTo.toNode.linksTo.splice(index, 1);
}
// Remove link from data/points collections
seriesProto.removePoint.call(series, series.data.indexOf(linkFromTo), false, false);
});
// Restore points array, after links are removed
series.points = series.data.slice();
// Proceed with removing node. It's similar to
// Series.removePoint() method, but doesn't modify other arrays
series.nodes.splice(series.nodes.indexOf(point), 1);
// Remove node options from config
while (i--) {
if (nodesOptions[i].id === point.options.id) {
series.options.nodes.splice(i, 1);
break;
}
}
if (point) {
point.destroy();
}
// Run redraw if requested
series.isDirty = true;
series.isDirtyData = true;
if (redraw) {
series.chart.redraw(redraw);
}
}
else {
series.removePoint(series.data.indexOf(point), redraw, animation);
}
}
/**
* Render link and add it to the DOM.
* @private
*/
renderLink() {
let attribs;
if (!this.graphic) {
this.graphic = this.series.chart.renderer
.path(this.getLinkPath())
.addClass(this.getClassName(), true)
.add(this.series.group);
if (!this.series.chart.styledMode) {
attribs = this.series.pointAttribs(this);
this.graphic.attr(attribs);
(this.dataLabels || []).forEach(function (label) {
if (label) {
label.attr({
opacity: attribs.opacity
});
}
});
}
}
}
}
extend(NetworkgraphPoint.prototype, {
setState: NodesComposition.setNodeState
});
/* *
*
* Default Export
*
* */
return NetworkgraphPoint;
});
_registerModule(_modules, 'Series/Networkgraph/NetworkgraphSeriesDefaults.js', [], function () {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
/* *
*
* Constants
*
* */
/**
* A networkgraph is a type of relationship chart, where connnections
* (links) attracts nodes (points) and other nodes repulse each other.
*
* @extends plotOptions.line
* @product highcharts
* @sample highcharts/demo/network-graph/
* Networkgraph
* @since 7.0.0
* @excluding boostThreshold, animation, animationLimit, connectEnds,
* colorAxis, colorKey, connectNulls, cropThreshold, dragDrop,
* getExtremesFromAll, label, linecap, negativeColor,
* pointInterval, pointIntervalUnit, pointPlacement,
* pointStart, softThreshold, stack, stacking, step,
* threshold, xAxis, yAxis, zoneAxis, dataSorting,
* boostBlending
* @requires modules/networkgraph
* @optionparent plotOptions.networkgraph
*
* @private
*/
const NetworkgraphSeriesDefaults = {
stickyTracking: false,
/**
* @default true
* @extends plotOptions.series.inactiveOtherPoints
* @private
*/
inactiveOtherPoints: true,
marker: {
enabled: true,
states: {
/**
* The opposite state of a hover for a single point node.
* Applied to all not connected nodes to the hovered one.
*
* @declare Highcharts.PointStatesInactiveOptionsObject
*/
inactive: {
/**
* Opacity of inactive markers.
*/
opacity: 0.3,
/**
* Animation when not hovering over the node.
*
* @type {boolean|Partial<Highcharts.AnimationOptionsObject>}
*/
animation: {
/** @internal */
duration: 50
}
}
}
},
states: {
/**
* The opposite state of a hover for a single point link. Applied
* to all links that are not coming from the hovered node.
*
* @declare Highcharts.SeriesStatesInactiveOptionsObject
*/
inactive: {
/**
* Opacity of inactive links.
*/
linkOpacity: 0.3,
/**
* Animation when not hovering over the node.
*
* @type {boolean|Partial<Highcharts.AnimationOptionsObject>}
*/
animation: {
/** @internal */
duration: 50
}
}
},
/**
* @sample highcharts/series-networkgraph/link-datalabels
* Networkgraph with labels on links
* @sample highcharts/series-networkgraph/textpath-datalabels
* Networkgraph with labels around nodes
* @sample highcharts/series-networkgraph/link-datalabels
* Data labels moved into the nodes
* @sample highcharts/series-networkgraph/link-datalabels
* Data labels moved under the links
*
* @declare Highcharts.SeriesNetworkgraphDataLabelsOptionsObject
*
* @private
*/
dataLabels: {
/**
* The
* [format string](https://www.highcharts.com/docs/chart-concepts/labels-and-string-formatting)
* specifying what to show for _node_ in the networkgraph. In v7.0
* defaults to `{key}`, since v7.1 defaults to `undefined` and
* `formatter` is used instead.
*
* @type {string}
* @since 7.0.0
* @apioption plotOptions.networkgraph.dataLabels.format
*/
// eslint-disable-next-line valid-jsdoc
/**
* Callback JavaScript function to format the data label for a node.
* Note that if a `format` is defined, the format takes precedence
* and the formatter is ignored.
*
* @type {Highcharts.SeriesNetworkgraphDataLabelsFormatterCallbackFunction}
* @since 7.0.0
*/
formatter: function () {
return this.key;
},
/**
* The
* [format string](https://www.highcharts.com/docs/chart-concepts/labels-and-string-formatting)
* specifying what to show for _links_ in the networkgraph.
* (Default: `undefined`)
*
* @type {string}
* @since 7.1.0
* @apioption plotOptions.networkgraph.dataLabels.linkFormat
*/
// eslint-disable-next-line valid-jsdoc
/**
* Callback to format data labels for _links_ in the sankey diagram.
* The `linkFormat` option takes precedence over the
* `linkFormatter`.
*
* @type {Highcharts.SeriesNetworkgraphDataLabelsFormatterCallbackFunction}
* @since 7.1.0
*/
linkFormatter: function () {
return (this.point.fromNode.name +
'<br>' +
this.point.toNode.name);
},
/**
* Options for a _link_ label text which should follow link
* connection. Border and background are disabled for a label that
* follows a path.
*
* **Note:** Only SVG-based renderer supports this option. Setting
* `useHTML` to true will disable this option.
*
* @extends plotOptions.networkgraph.dataLabels.textPath
* @since 7.1.0
*/
linkTextPath: {
enabled: true
},
textPath: {
enabled: false
},
style: {
transition: 'opacity 2000ms'
},
defer: true,
animation: {
defer: 1000
}
},
/**
* Link style options
* @private
*/
link: {
/**
* A name for the dash style to use for links.
*
* @type {string}
* @apioption plotOptions.networkgraph.link.dashStyle
*/
/**
* Opacity of the link between two nodes.
*
* @type {number}
* @default 1
* @apioption plotOptions.networkgraph.link.opacity
*/
/**
* Color of the link between two nodes.
*/
color: 'rgba(100, 100, 100, 0.5)',
/**
* Width (px) of the link between two nodes.
*/
width: 1
},
/**
* Flag to determine if nodes are draggable or not.
* @private
*/
draggable: true,
layoutAlgorithm: {
/**
* Repulsive force applied on a node. Passed are two arguments:
* - `d` - which is current distance between two nodes
* - `k` - which is desired distance between two nodes
*
* In `verlet` integration, defaults to:
* `function (d, k) { return (k - d) / d * (k > d ? 1 : 0) }`
*
* @see [layoutAlgorithm.integration](#series.networkgraph.layoutAlgorithm.integration)
*
* @sample highcharts/series-networkgraph/forces/
* Custom forces with Euler integration
* @sample highcharts/series-networkgraph/cuboids/
* Custom forces with Verlet integration
*
* @type {Function}
* @default function (d, k) { return k * k / d; }
* @apioption plotOptions.networkgraph.layoutAlgorithm.repulsiveForce
*/
/**
* Attraction force applied on a node which is conected to another
* node by a link. Passed are two arguments:
* - `d` - which is current distance between two nodes
* - `k` - which is desired distance between two nodes
*
* In `verlet` integration, defaults to:
* `function (d, k) { return (k - d) / d; }`
*
* @see [layoutAlgorithm.integration](#series.networkgraph.layoutAlgorithm.integration)
*
* @sample highcharts/series-networkgraph/forces/
* Custom forces with Euler integration
* @sample highcharts/series-networkgraph/cuboids/
* Custom forces with Verlet integration
*
* @type {Function}
* @default function (d, k) { return k * k / d; }
* @apioption plotOptions.networkgraph.layoutAlgorithm.attractiveForce
*/
/**
* Ideal length (px) of the link between two nodes. When not
* defined, length is calculated as:
* `Math.pow(availableWidth * availableHeight / nodesLength, 0.4);`
*
* Note: Because of the algorithm specification, length of each link
* might be not exactly as specified.
*
* @sample highcharts/series-networkgraph/styled-links/
* Numerical values
*
* @type {number}
* @apioption plotOptions.networkgraph.layoutAlgorithm.linkLength
*/
/**
* Initial layout algorithm for positioning nodes. Can be one of
* built-in options ("circle", "random") or a function where
* positions should be set on each node (`this.nodes`) as
* `node.plotX` and `node.plotY`
*
* @sample highcharts/series-networkgraph/initial-positions/
* Initial positions with callback
*
* @type {"circle"|"random"|Function}
*/
initialPositions: 'circle',
/**
* When `initialPositions` are set to 'circle',
* `initialPositionRadius` is a distance from the center of circle,
* in which nodes are created.
*
* @type {number}
* @default 1
* @since 7.1.0
*/
initialPositionRadius: 1,
/**
* Experimental. Enables live simulation of the algorithm
* implementation. All nodes are animated as the forces applies on
* them.
*
* @sample highcharts/demo/network-graph/
* Live simulation enabled
*/
enableSimulation: false,
/**
* Barnes-Hut approximation only.
* Deteremines when distance between cell and node is small enough
* to calculate forces. Value of `theta` is compared directly with
* quotient `s / d`, where `s` is the size of the cell, and `d` is
* distance between center of cell's mass and currently compared
* node.
*
* @see [layoutAlgorithm.approximation](#series.networkgraph.layoutAlgorithm.approximation)
*
* @since 7.1.0
*/
theta: 0.5,
/**
* Verlet integration only.
* Max speed that node can get in one iteration. In terms of
* simulation, it's a maximum translation (in pixels) that node can
* move (in both, x and y, dimensions). While `friction` is applied
* on all nodes, max speed is applied only for nodes that move very
* fast, for example small or disconnected ones.
*
* @see [layoutAlgorithm.integration](#series.networkgraph.layoutAlgorithm.integration)
* @see [layoutAlgorithm.friction](#series.networkgraph.layoutAlgorithm.friction)
*
* @since 7.1.0
*/
maxSpeed: 10,
/**
* Approximation used to calculate repulsive forces affecting nodes.
* By default, when calculating net force, nodes are compared
* against each other, which gives O(N^2) complexity. Using
* Barnes-Hut approximation, we decrease this to O(N log N), but the
* resulting graph will have different layout. Barnes-Hut
* approximation divides space into rectangles via quad tree, where
* forces exerted on nodes are calculated directly for nearby cells,
* and for all others, cells are treated as a separate node with
* center of mass.
*
* @see [layoutAlgorithm.theta](#series.networkgraph.layoutAlgorithm.theta)
*
* @sample highcharts/series-networkgraph/barnes-hut-approximation/
* A graph with Barnes-Hut approximation
*
* @type {string}
* @validvalue ["barnes-hut", "none"]
* @since 7.1.0
*/
approximation: 'none',
/**
* Type of the algorithm used when positioning nodes.
*
* @type {string}
* @validvalue ["reingold-fruchterman"]
*/
type: 'reingold-fruchterman',
/**
* Integration type. Available options are `'euler'` and `'verlet'`.
* Integration determines how forces are applied on particles. In
* Euler integration, force is applied direct as
* `newPosition += velocity;`.
* In Verlet integration, new position is based on a previous
* position without velocity:
* `newPosition += previousPosition - newPosition`.
*
* Note that different integrations give different results as forces
* are different.
*
* In Highcharts v7.0.x only `'euler'` integration was supported.
*
* @sample highcharts/series-networkgraph/integration-comparison/
* Comparison of Verlet and Euler integrations
*
* @type {string}
* @validvalue ["euler", "verlet"]
* @since 7.1.0
*/
integration: 'euler',
/**
* Max number of iterations before algorithm will stop. In general,
* algorithm should find positions sooner, but when rendering huge
* number of nodes, it is recommended to increase this value as
* finding perfect graph positions can require more time.
*/
maxIterations: 1000,
/**
* Gravitational const used in the barycenter force of the
* algorithm.
*
* @sample highcharts/series-networkgraph/forces/
* Custom forces with Euler integration
*/
gravitationalConstant: 0.0625,
/**
* Friction applied on forces to prevent nodes rushing to fast to
* the desired positions.
*/
friction: -0.981
},
showInLegend: false
};
/* *
*
* Default Export
*
* */
/* *
*
* API Options
*
* */
/**
* Fires after the simulation is ended and the layout is stable.
*
* @type {Highcharts.NetworkgraphAfterSimulationCallbackFunction}
* @product highcharts
* @apioption series.networkgraph.events.afterSimulation
*/
/**
* A `networkgraph` series. If the [type](#series.networkgraph.type) option is
* not specified, it is inherited from [chart.type](#chart.type).
*
* @extends series,plotOptions.networkgraph
* @excluding boostThreshold, animation, animationLimit, connectEnds,
* connectNulls, cropThreshold, dragDrop, getExtremesFromAll, label,
* linecap, negativeColor, pointInterval, pointIntervalUnit,
* pointPlacement, pointStart, softThreshold, stack, stacking,
* step, threshold, xAxis, yAxis, zoneAxis, dataSorting,
* boostBlending
* @product highcharts
* @requires modules/networkgraph
* @apioption series.networkgraph
*/
/**
* An array of data points for the series. For the `networkgraph` series type,
* points can be given in the following way:
*
* An array of objects with named values. The following snippet shows only a
* few settings, see the complete options set below. If the total number of
* data points exceeds the series'
* [turboThreshold](#series.area.turboThreshold), this option is not available.
*
* ```js
* data: [{
* from: 'Category1',
* to: 'Category2'
* }, {
* from: 'Category1',
* to: 'Category3'
* }]
* ```
*
* @type {Array<Object|Array|number>}
* @extends series.line.data
* @excluding drilldown,marker,x,y,draDrop
* @sample {highcharts} highcharts/chart/reflow-true/
* Numerical values
* @sample {highcharts} highcharts/series/data-array-of-arrays/
* Arrays of numeric x and y
* @sample {highcharts} highcharts/series/data-array-of-arrays-datetime/
* Arrays of datetime x and y
* @sample {highcharts} highcharts/series/data-array-of-name-value/
* Arrays of point.name and y
* @sample {highcharts} highcharts/series/data-array-of-objects/
* Config objects
* @product highcharts
* @apioption series.networkgraph.data
*/
/**
* @type {Highcharts.SeriesNetworkgraphDataLabelsOptionsObject|Array<Highcharts.SeriesNetworkgraphDataLabelsOptionsObject>}
* @product highcharts
* @apioption series.networkgraph.data.dataLabels
*/
/**
* The node that the link runs from.
*
* @type {string}
* @product highcharts
* @apioption series.networkgraph.data.from
*/
/**
* The node that the link runs to.
*
* @type {string}
* @product highcharts
* @apioption series.networkgraph.data.to
*/
/**
* A collection of options for the individual nodes. The nodes in a
* networkgraph diagram are auto-generated instances of `Highcharts.Point`,
* but options can be applied here and linked by the `id`.
*
* @sample highcharts/series-networkgraph/data-options/
* Networkgraph diagram with node options
*
* @type {Array<*>}
* @product highcharts
* @apioption series.networkgraph.nodes
*/
/**
* The id of the auto-generated node, referring to the `from` or `to` setting of
* the link.
*
* @type {string}
* @product highcharts
* @apioption series.networkgraph.nodes.id
*/
/**
* The color of the auto generated node.
*
* @type {Highcharts.ColorString}
* @product highcharts
* @apioption series.networkgraph.nodes.color
*/
/**
* The color index of the auto generated node, especially for use in styled
* mode.
*
* @type {number}
* @product highcharts
* @apioption series.networkgraph.nodes.colorIndex
*/
/**
* The name to display for the node in data labels and tooltips. Use this when
* the name is different from the `id`. Where the id must be unique for each
* node, this is not necessary for the name.
*
* @sample highcharts/series-networkgraph/data-options/
* Networkgraph diagram with node options
*
* @type {string}
* @product highcharts
* @apioption series.networkgraph.nodes.name
*/
/**
* Mass of the node. By default, each node has mass equal to it's marker radius
* . Mass is used to determine how two connected nodes should affect
* each other:
*
* Attractive force is multiplied by the ratio of two connected
* nodes; if a big node has weights twice as the small one, then the small one
* will move towards the big one twice faster than the big one to the small one
* .
*
* @sample highcharts/series-networkgraph/ragdoll/
* Mass determined by marker.radius
*
* @type {number}
* @product highcharts
* @apioption series.networkgraph.nodes.mass
*/
/**
* Options for the node markers.
*
* @extends plotOptions.networkgraph.marker
* @apioption series.networkgraph.nodes.marker
*/
/**
* Individual data label for each node. The options are the same as
* the ones for [series.networkgraph.dataLabels](#series.networkgraph.dataLabels).
*
* @type {Highcharts.SeriesNetworkgraphDataLabelsOptionsObject|Array<Highcharts.SeriesNetworkgraphDataLabelsOptionsObject>}
*
* @apioption series.networkgraph.nodes.dataLabels
*/
''; // Adds doclets above to transpiled file
return NetworkgraphSeriesDefaults;
});
_registerModule(_modules, 'Series/Networkgraph/EulerIntegration.js', [], function () {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
/* *
*
* Functions
*
* */
/**
* Attractive force.
*
* In Euler integration, force is stored in a node, not changing it's
* position. Later, in `integrate()` forces are applied on nodes.
*
* @private
* @param {Highcharts.Point} link
* Link that connects two nodes
* @param {number} force
* Force calculated in `repulsiveForceFunction`
* @param {Highcharts.PositionObject} distanceXY
* Distance between two nodes e.g. `{x, y}`
* @param {number} distanceR
*/
function attractive(link, force, distanceXY, distanceR) {
const massFactor = link.getMass(), translatedX = (distanceXY.x / distanceR) * force, translatedY = (distanceXY.y / distanceR) * force;
if (!link.fromNode.fixedPosition) {
link.fromNode.dispX -=
translatedX * massFactor.fromNode / link.fromNode.degree;
link.fromNode.dispY -=
translatedY * massFactor.fromNode / link.fromNode.degree;
}
if (!link.toNode.fixedPosition) {
link.toNode.dispX +=
translatedX * massFactor.toNode / link.toNode.degree;
link.toNode.dispY +=
translatedY * massFactor.toNode / link.toNode.degree;
}
}
/**
* Attractive force function. Can be replaced by API's
* `layoutAlgorithm.attractiveForce`
*
* Other forces that can be used:
*
* basic, not recommended:
* `function (d, k) { return d / k }`
*
* @private
* @param {number} d current distance between two nodes
* @param {number} k expected distance between two nodes
* @return {number} force
*/
function attractiveForceFunction(d, k) {
return d * d / k;
}
/**
* Barycenter force. Calculate and applys barycenter forces on the
* nodes. Making them closer to the center of their barycenter point.
*
* In Euler integration, force is stored in a node, not changing it's
* position. Later, in `integrate()` forces are applied on nodes.
*
* @private
*/
function barycenter() {
const gravitationalConstant = this.options.gravitationalConstant, xFactor = this.barycenter.xFactor, yFactor = this.barycenter.yFactor;
this.nodes.forEach(function (node) {
if (!node.fixedPosition) {
const degree = node.getDegree(), phi = degree * (1 + degree / 2);
node.dispX += ((xFactor - node.plotX) *
gravitationalConstant *
phi / node.degree);
node.dispY += ((yFactor - node.plotY) *
gravitationalConstant *
phi / node.degree);
}
});
}
/**
* Estimate the best possible distance between two nodes, making graph
* readable.
* @private
*/
function getK(layout) {
return Math.pow(layout.box.width * layout.box.height / layout.nodes.length, 0.3);
}
/**
* Integration method.
*
* In Euler integration, force were stored in a node, not changing it's
* position. Now, in the integrator method, we apply changes.
*
* Euler:
*
* Basic form: `x(n+1) = x(n) + v(n)`
*
* With Rengoild-Fruchterman we get:
* `x(n+1) = x(n) + v(n) / length(v(n)) * min(v(n), temperature(n))`
* where:
* - `x(n+1)`: next position
* - `x(n)`: current position
* - `v(n)`: velocity (comes from net force)
* - `temperature(n)`: current temperature
*
* Known issues:
* Oscillations when force vector has the same magnitude but opposite
* direction in the next step. Potentially solved by decreasing force by
* `v * (1 / node.degree)`
*
* Note:
* Actually `min(v(n), temperature(n))` replaces simulated annealing.
*
* @private
* @param {Highcharts.NetworkgraphLayout} layout
* Layout object
* @param {Highcharts.Point} node
* Node that should be translated
*/
function integrate(layout, node) {
node.dispX +=
node.dispX * layout.options.friction;
node.dispY +=
node.dispY * layout.options.friction;
const distanceR = node.temperature = layout.vectorLength({
x: node.dispX,
y: node.dispY
});
if (distanceR !== 0) {
node.plotX += (node.dispX / distanceR *
Math.min(Math.abs(node.dispX), layout.temperature));
node.plotY += (node.dispY / distanceR *
Math.min(Math.abs(node.dispY), layout.temperature));
}
}
/**
* Repulsive force.
*
* @private
* @param {Highcharts.Point} node
* Node that should be translated by force.
* @param {number} force
* Force calculated in `repulsiveForceFunction`
* @param {Highcharts.PositionObject} distanceXY
* Distance between two nodes e.g. `{x, y}`
*/
function repulsive(node, force, distanceXY, distanceR) {
node.dispX +=
(distanceXY.x / distanceR) * force / node.degree;
node.dispY +=
(distanceXY.y / distanceR) * force / node.degree;
}
/**
* Repulsive force function. Can be replaced by API's
* `layoutAlgorithm.repulsiveForce`.
*
* Other forces that can be used:
*
* basic, not recommended:
* `function (d, k) { return k / d }`
*
* standard:
* `function (d, k) { return k * k / d }`
*
* grid-variant:
* `function (d, k) { return k * k / d * (2 * k - d > 0 ? 1 : 0) }`
*
* @private
* @param {number} d current distance between two nodes
* @param {number} k expected distance between two nodes
* @return {number} force
*/
function repulsiveForceFunction(d, k) {
return k * k / d;
}
/* *
*
* Default Export
*
* */
const EulerIntegration = {
attractive,
attractiveForceFunction,
barycenter,
getK,
integrate,
repulsive,
repulsiveForceFunction
};
return EulerIntegration;
});
_registerModule(_modules, 'Series/Networkgraph/QuadTreeNode.js', [], function () {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
/* *
*
* Class
*
* */
/**
* The QuadTree node class. Used in Networkgraph chart as a base for Barnes-Hut
* approximation.
*
* @private
* @class
* @name Highcharts.QuadTreeNode
*
* @param {Highcharts.Dictionary<number>} box
* Available space for the node
*/
class QuadTreeNode {
/* *
*
* Constructor
*
* */
constructor(box) {
/* *
*
* Properties
*
* */
/**
* Read only. If QuadTreeNode is an external node, Point is stored in
* `this.body`.
*
* @name Highcharts.QuadTreeNode#body
* @type {boolean|Highcharts.Point}
*/
this.body = false;
/**
* Read only. Internal nodes when created are empty to reserve the
* space. If Point is added to this QuadTreeNode, QuadTreeNode is no
* longer empty.
*
* @name Highcharts.QuadTreeNode#isEmpty
* @type {boolean}
*/
this.isEmpty = false;
/**
* Read only. Flag to determine if QuadTreeNode is internal (and has
* subnodes with mass and central position) or external (bound to
* Point).
*
* @name Highcharts.QuadTreeNode#isInternal
* @type {boolean}
*/
this.isInternal = false;
/**
* Read only. Array of subnodes. Empty if QuadTreeNode has just one
* Point. When added another Point to this QuadTreeNode, array is
* filled with four subnodes.
*
* @name Highcharts.QuadTreeNode#nodes
* @type {Array<Highcharts.QuadTreeNode>}
*/
this.nodes = [];
/**
* Read only. The available space for node.
*
* @name Highcharts.QuadTreeNode#box
* @type {Highcharts.Dictionary<number>}
*/
this.box = box;
/**
* Read only. The minium of width and height values.
*
* @name Highcharts.QuadTreeNode#boxSize
* @type {number}
*/
this.boxSize = Math.min(box.width, box.height);
}
/* *
*
* Functions
*
* */
/**
* When inserting another node into the box, that already hove one node,
* divide the available space into another four quadrants.
*
* Indexes of quadrants are:
* ```
* ------------- -------------
* | | | | |
* | | | 0 | 1 |
* | | divide() | | |
* | 1 | -----------> -------------
* | | | | |
* | | | 3 | 2 |
* | | | | |
* ------------- -------------
* ```
*/
divideBox() {
const halfWidth = this.box.width / 2, halfHeight = this.box.height / 2;
// Top left
this.nodes[0] = new QuadTreeNode({
left: this.box.left,
top: this.box.top,
width: halfWidth,
height: halfHeight
});
// Top right
this.nodes[1] = new QuadTreeNode({
left: this.box.left + halfWidth,
top: this.box.top,
width: halfWidth,
height: halfHeight
});
// Bottom right
this.nodes[2] = new QuadTreeNode({
left: this.box.left + halfWidth,
top: this.box.top + halfHeight,
width: halfWidth,
height: halfHeight
});
// Bottom left
this.nodes[3] = new QuadTreeNode({
left: this.box.left,
top: this.box.top + halfHeight,
width: halfWidth,
height: halfHeight
});
}
/**
* Determine which of the quadrants should be used when placing node in
* the QuadTree. Returned index is always in range `< 0 , 3 >`.
* @private
*/
getBoxPosition(point) {
const left = point.plotX < this.box.left + this.box.width / 2, top = point.plotY < this.box.top + this.box.height / 2;
let index;
if (left) {
if (top) {
// Top left
index = 0;
}
else {
// Bottom left
index = 3;
}
}
else {
if (top) {
// Top right
index = 1;
}
else {
// Bottom right
index = 2;
}
}
return index;
}
/**
* Insert recursively point(node) into the QuadTree. If the given
* quadrant is already occupied, divide it into smaller quadrants.
*
* @param {Highcharts.Point} point
* Point/node to be inserted
* @param {number} depth
* Max depth of the QuadTree
*/
insert(point, depth) {
let newQuadTreeNode;
if (this.isInternal) {
// Internal node:
this.nodes[this.getBoxPosition(point)].insert(point, depth - 1);
}
else {
this.isEmpty = false;
if (!this.body) {
// First body in a quadrant:
this.isInternal = false;
this.body = point;
}
else {
if (depth) {
// Every other body in a quadrant:
this.isInternal = true;
this.divideBox();
// Reinsert main body only once:
if (this.body !== true) {
this.nodes[this.getBoxPosition(this.body)]
.insert(this.body, depth - 1);
this.body = true;
}
// Add second body:
this.nodes[this.getBoxPosition(point)]
.insert(point, depth - 1);
}
else {
// We are below max allowed depth. That means either:
// - really huge number of points
// - falling two points into exactly the same position
// In this case, create another node in the QuadTree.
//
// Alternatively we could add some noise to the
// position, but that could result in different
// rendered chart in exporting.
newQuadTreeNode = new QuadTreeNode({
top: point.plotX || NaN,
left: point.plotY || NaN,
// Width/height below 1px
width: 0.1,
height: 0.1
});
newQuadTreeNode.body = point;
newQuadTreeNode.isInternal = false;
this.nodes.push(newQuadTreeNode);
}
}
}
}
/**
* Each quad node requires it's mass and center position. That mass and
* position is used to imitate real node in the layout by approximation.
*/
updateMassAndCenter() {
let mass = 0, plotX = 0, plotY = 0;
if (this.isInternal) {
// Calculate weightened mass of the quad node:
for (const pointMass of this.nodes) {
if (!pointMass.isEmpty) {
mass += pointMass.mass;
plotX += pointMass.plotX * pointMass.mass;
plotY += pointMass.plotY * pointMass.mass;
}
}
plotX /= mass;
plotY /= mass;
}
else if (this.body) {
// Just one node, use coordinates directly:
mass = this.body.mass;
plotX = this.body.plotX;
plotY = this.body.plotY;
}
// Store details:
this.mass = mass;
this.plotX = plotX;
this.plotY = plotY;
}
}
/* *
*
* Default Export
*
* */
return QuadTreeNode;
});
_registerModule(_modules, 'Series/Networkgraph/QuadTree.js', [_modules['Series/Networkgraph/QuadTreeNode.js']], function (QuadTreeNode) {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
/* *
*
* Class
*
* */
/**
* The QuadTree class. Used in Networkgraph chart as a base for Barnes-Hut
* approximation.
*
* @private
* @class
* @name Highcharts.QuadTree
*
* @param {number} x
* Left position of the plotting area
* @param {number} y
* Top position of the plotting area
* @param {number} width
* Width of the plotting area
* @param {number} height
* Height of the plotting area
*/
class QuadTree {
/* *
*
* Constructor
*
* */
constructor(x, y, width, height) {
// Boundary rectangle:
this.box = {
left: x,
top: y,
width: width,
height: height
};
this.maxDepth = 25;
this.root = new QuadTreeNode(this.box);
this.root.isInternal = true;
this.root.isRoot = true;
this.root.divideBox();
}
/* *
*
* Functions
*
* */
/**
* Calculate mass of the each QuadNode in the tree.
*/
calculateMassAndCenter() {
this.visitNodeRecursive(null, null, function (node) {
node.updateMassAndCenter();
});
}
/**
* Insert nodes into the QuadTree
*
* @param {Array<Highcharts.Point>} points
* Points as nodes
*/
insertNodes(points) {
for (const point of points) {
this.root.insert(point, this.maxDepth);
}
}
/**
* Depth first treversal (DFS). Using `before` and `after` callbacks,
* we can get two results: preorder and postorder traversals, reminder:
*
* ```
* (a)
* / \
* (b) (c)
* / \
* (d) (e)
* ```
*
* DFS (preorder): `a -> b -> d -> e -> c`
*
* DFS (postorder): `d -> e -> b -> c -> a`
*
* @param {Highcharts.QuadTreeNode|null} node
* QuadTree node
* @param {Function} [beforeCallback]
* Function to be called before visiting children nodes.
* @param {Function} [afterCallback]
* Function to be called after visiting children nodes.
*/
visitNodeRecursive(node, beforeCallback, afterCallback) {
let goFurther;
if (!node) {
node = this.root;
}
if (node === this.root && beforeCallback) {
goFurther = beforeCallback(node);
}
if (goFurther === false) {
return;
}
for (const qtNode of node.nodes) {
if (qtNode.isInternal) {
if (beforeCallback) {
goFurther = beforeCallback(qtNode);
}
if (goFurther === false) {
continue;
}
this.visitNodeRecursive(qtNode, beforeCallback, afterCallback);
}
else if (qtNode.body) {
if (beforeCallback) {
beforeCallback(qtNode.body);
}
}
if (afterCallback) {
afterCallback(qtNode);
}
}
if (node === this.root && afterCallback) {
afterCallback(node);
}
}
}
/* *
*
* Default Export
*
* */
return QuadTree;
});
_registerModule(_modules, 'Series/Networkgraph/VerletIntegration.js', [], function () {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
/* *
*
* Functions
*
* */
/**
* Attractive force.
*
* In Verlet integration, force is applied on a node immediately to it's
* `plotX` and `plotY` position.
*
* @private
* @param {Highcharts.Point} link
* Link that connects two nodes
* @param {number} force
* Force calculated in `repulsiveForceFunction`
* @param {Highcharts.PositionObject} distanceXY
* Distance between two nodes e.g. `{x, y}`
*/
function attractive(link, force, distanceXY) {
const massFactor = link.getMass(), translatedX = -distanceXY.x * force * this.diffTemperature, translatedY = -distanceXY.y * force * this.diffTemperature;
if (!link.fromNode.fixedPosition) {
link.fromNode.plotX -=
translatedX * massFactor.fromNode / link.fromNode.degree;
link.fromNode.plotY -=
translatedY * massFactor.fromNode / link.fromNode.degree;
}
if (!link.toNode.fixedPosition) {
link.toNode.plotX +=
translatedX * massFactor.toNode / link.toNode.degree;
link.toNode.plotY +=
translatedY * massFactor.toNode / link.toNode.degree;
}
}
/**
* Attractive force function. Can be replaced by API's
* `layoutAlgorithm.attractiveForce`
*
* @private
* @param {number} d current distance between two nodes
* @param {number} k expected distance between two nodes
* @return {number} force
*/
function attractiveForceFunction(d, k) {
// Used in API:
return (k - d) / d;
}
/**
* Barycenter force. Calculate and applys barycenter forces on the
* nodes. Making them closer to the center of their barycenter point.
*
* In Verlet integration, force is applied on a node immediately to it's
* `plotX` and `plotY` position.
*
* @private
*/
function barycenter() {
const gravitationalConstant = this.options.gravitationalConstant || 0, xFactor = (this.barycenter.xFactor -
(this.box.left + this.box.width) / 2) * gravitationalConstant, yFactor = (this.barycenter.yFactor -
(this.box.top + this.box.height) / 2) * gravitationalConstant;
this.nodes.forEach(function (node) {
if (!node.fixedPosition) {
node.plotX -=
xFactor / node.mass / node.degree;
node.plotY -=
yFactor / node.mass / node.degree;
}
});
}
/**
* Estiamte the best possible distance between two nodes, making graph
* readable.
* @private
*/
function getK(layout) {
return Math.pow(layout.box.width * layout.box.height / layout.nodes.length, 0.5);
}
/**
* Integration method.
*
* In Verlet integration, forces are applied on node immediately to it's
* `plotX` and `plotY` position.
*
* Verlet without velocity:
*
* x(n+1) = 2 * x(n) - x(n-1) + A(T) * deltaT ^ 2
*
* where:
* - x(n+1) - new position
* - x(n) - current position
* - x(n-1) - previous position
*
* Assuming A(t) = 0 (no acceleration) and (deltaT = 1) we get:
*
* x(n+1) = x(n) + (x(n) - x(n-1))
*
* where:
* - (x(n) - x(n-1)) - position change
*
* TO DO:
* Consider Verlet with velocity to support additional
* forces. Or even Time-Corrected Verlet by Jonathan
* "lonesock" Dummer
*
* @private
* @param {Highcharts.NetworkgraphLayout} layout layout object
* @param {Highcharts.Point} node node that should be translated
*/
function integrate(layout, node) {
const friction = -layout.options.friction, maxSpeed = layout.options.maxSpeed, prevX = node.prevX, prevY = node.prevY,
// Apply friction:
frictionX = ((node.plotX + node.dispX -
prevX) * friction), frictionY = ((node.plotY + node.dispY -
prevY) * friction), abs = Math.abs, signX = abs(frictionX) / (frictionX || 1), // Need to deal with 0
signY = abs(frictionY) / (frictionY || 1),
// Apply max speed:
diffX = signX * Math.min(maxSpeed, Math.abs(frictionX)), diffY = signY * Math.min(maxSpeed, Math.abs(frictionY));
// Store for the next iteration:
node.prevX = node.plotX + node.dispX;
node.prevY = node.plotY + node.dispY;
// Update positions:
node.plotX += diffX;
node.plotY += diffY;
node.temperature = layout.vectorLength({
x: diffX,
y: diffY
});
}
/**
* Repulsive force.
*
* In Verlet integration, force is applied on a node immediately to it's
* `plotX` and `plotY` position.
*
* @private
* @param {Highcharts.Point} node
* Node that should be translated by force.
* @param {number} force
* Force calculated in `repulsiveForceFunction`
* @param {Highcharts.PositionObject} distanceXY
* Distance between two nodes e.g. `{x, y}`
*/
function repulsive(node, force, distanceXY) {
const factor = force * this.diffTemperature / node.mass / node.degree;
if (!node.fixedPosition) {
node.plotX += distanceXY.x * factor;
node.plotY += distanceXY.y * factor;
}
}
/**
* Repulsive force function. Can be replaced by API's
* `layoutAlgorithm.repulsiveForce`
*
* @private
* @param {number} d current distance between two nodes
* @param {number} k expected distance between two nodes
* @return {number} force
*/
function repulsiveForceFunction(d, k) {
// Used in API:
return (k - d) / d * (k > d ? 1 : 0); // Force only for close nodes
}
/* *
*
* Default Export
*
* */
const VerletIntegration = {
attractive,
attractiveForceFunction,
barycenter,
getK,
integrate,
repulsive,
repulsiveForceFunction
};
return VerletIntegration;
});
_registerModule(_modules, 'Series/Networkgraph/ReingoldFruchtermanLayout.js', [_modules['Series/Networkgraph/EulerIntegration.js'], _modules['Core/Globals.js'], _modules['Series/GraphLayoutComposition.js'], _modules['Series/Networkgraph/QuadTree.js'], _modules['Core/Utilities.js'], _modules['Series/Networkgraph/VerletIntegration.js']], function (EulerIntegration, H, GraphLayout, QuadTree, U, VerletIntegration) {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { win } = H;
const { clamp, defined, isFunction, fireEvent, pick } = U;
/* *
*
* Class
*
* */
/**
* Reingold-Fruchterman algorithm from
* "Graph Drawing by Force-directed Placement" paper.
* @private
*/
class ReingoldFruchtermanLayout {
constructor() {
/* *
*
* Static Functions
*
* */
this.box = {};
this.currentStep = 0;
this.initialRendering = true;
this.links = [];
this.nodes = [];
this.series = [];
this.simulation = false;
}
static compose(ChartClass) {
GraphLayout.compose(ChartClass);
GraphLayout.integrations.euler = EulerIntegration;
GraphLayout.integrations.verlet = VerletIntegration;
GraphLayout.layouts['reingold-fruchterman'] =
ReingoldFruchtermanLayout;
}
init(options) {
this.options = options;
this.nodes = [];
this.links = [];
this.series = [];
this.box = {
x: 0,
y: 0,
width: 0,
height: 0
};
this.setInitialRendering(true);
this.integration =
GraphLayout.integrations[options.integration];
this.enableSimulation = options.enableSimulation;
this.attractiveForce = pick(options.attractiveForce, this.integration.attractiveForceFunction);
this.repulsiveForce = pick(options.repulsiveForce, this.integration.repulsiveForceFunction);
this.approximation = options.approximation;
}
updateSimulation(enable) {
this.enableSimulation = pick(enable, this.options.enableSimulation);
}
start() {
const layout = this, series = this.series, options = this.options;
layout.currentStep = 0;
layout.forces = series[0] && series[0].forces || [];
layout.chart = series[0] && series[0].chart;
if (layout.initialRendering) {
layout.initPositions();
// Render elements in initial positions:
series.forEach(function (s) {
s.finishedAnimating = true; // #13169
s.render();
});
}
layout.setK();
layout.resetSimulation(options);
if (layout.enableSimulation) {
layout.step();
}
}
step() {
const anyLayout = this, allSeries = this.series;
// Algorithm:
this.currentStep++;
if (this.approximation === 'barnes-hut') {
this.createQuadTree();
this.quadTree.calculateMassAndCenter();
}
for (const forceName of this.forces || []) {
anyLayout[forceName + 'Forces'](this.temperature);
}
// Limit to the plotting area and cool down:
this.applyLimits();
// Cool down the system:
this.temperature = this.coolDown(this.startTemperature, this.diffTemperature, this.currentStep);
this.prevSystemTemperature = this.systemTemperature;
this.systemTemperature = this.getSystemTemperature();
if (this.enableSimulation) {
for (const series of allSeries) {
// Chart could be destroyed during the simulation
if (series.chart) {
series.render();
}
}
if (this.maxIterations-- &&
isFinite(this.temperature) &&
!this.isStable()) {
if (this.simulation) {
win.cancelAnimationFrame(this.simulation);
}
this.simulation = win.requestAnimationFrame(() => this.step());
}
else {
this.simulation = false;
this.series.forEach((s) => {
fireEvent(s, 'afterSimulation');
});
}
}
}
stop() {
if (this.simulation) {
win.cancelAnimationFrame(this.simulation);
}
}
setArea(x, y, w, h) {
this.box = {
left: x,
top: y,
width: w,
height: h
};
}
setK() {
// Optimal distance between nodes,
// available space around the node:
this.k = this.options.linkLength || this.integration.getK(this);
}
addElementsToCollection(elements, collection) {
for (const element of elements) {
if (collection.indexOf(element) === -1) {
collection.push(element);
}
}
}
removeElementFromCollection(element, collection) {
const index = collection.indexOf(element);
if (index !== -1) {
collection.splice(index, 1);
}
}
clear() {
this.nodes.length = 0;
this.links.length = 0;
this.series.length = 0;
this.resetSimulation();
}
resetSimulation() {
this.forcedStop = false;
this.systemTemperature = 0;
this.setMaxIterations();
this.setTemperature();
this.setDiffTemperature();
}
restartSimulation() {
if (!this.simulation) {
// When dragging nodes, we don't need to calculate
// initial positions and rendering nodes:
this.setInitialRendering(false);
// Start new simulation:
if (!this.enableSimulation) {
// Run only one iteration to speed things up:
this.setMaxIterations(1);
}
else {
this.start();
}
if (this.chart) {
this.chart.redraw();
}
// Restore defaults:
this.setInitialRendering(true);
}
else {
// Extend current simulation:
this.resetSimulation();
}
}
setMaxIterations(maxIterations) {
this.maxIterations = pick(maxIterations, this.options.maxIterations);
}
setTemperature() {
this.temperature = this.startTemperature =
Math.sqrt(this.nodes.length);
}
setDiffTemperature() {
this.diffTemperature = this.startTemperature /
(this.options.maxIterations + 1);
}
setInitialRendering(enable) {
this.initialRendering = enable;
}
createQuadTree() {
this.quadTree = new QuadTree(this.box.left, this.box.top, this.box.width, this.box.height);
this.quadTree.insertNodes(this.nodes);
}
initPositions() {
const initialPositions = this.options.initialPositions;
if (isFunction(initialPositions)) {
initialPositions.call(this);
for (const node of this.nodes) {
if (!defined(node.prevX)) {
node.prevX = node.plotX;
}
if (!defined(node.prevY)) {
node.prevY = node.plotY;
}
node.dispX = 0;
node.dispY = 0;
}
}
else if (initialPositions === 'circle') {
this.setCircularPositions();
}
else {
this.setRandomPositions();
}
}
setCircularPositions() {
const box = this.box, nodes = this.nodes, nodesLength = nodes.length + 1, angle = 2 * Math.PI / nodesLength, rootNodes = nodes.filter(function (node) {
return node.linksTo.length === 0;
}), visitedNodes = {}, radius = this.options.initialPositionRadius, addToNodes = (node) => {
for (const link of node.linksFrom || []) {
if (!visitedNodes[link.toNode.id]) {
visitedNodes[link.toNode.id] = true;
sortedNodes.push(link.toNode);
addToNodes(link.toNode);
}
}
};
let sortedNodes = [];
// Start with identified root nodes an sort the nodes by their
// hierarchy. In trees, this ensures that branches don't cross
// eachother.
for (const rootNode of rootNodes) {
sortedNodes.push(rootNode);
addToNodes(rootNode);
}
// Cyclic tree, no root node found
if (!sortedNodes.length) {
sortedNodes = nodes;
// Dangling, cyclic trees
}
else {
for (const node of nodes) {
if (sortedNodes.indexOf(node) === -1) {
sortedNodes.push(node);
}
}
}
let node;
// Initial positions are laid out along a small circle, appearing
// as a cluster in the middle
for (let i = 0, iEnd = sortedNodes.length; i < iEnd; ++i) {
node = sortedNodes[i];
node.plotX = node.prevX = pick(node.plotX, box.width / 2 + radius * Math.cos(i * angle));
node.plotY = node.prevY = pick(node.plotY, box.height / 2 + radius * Math.sin(i * angle));
node.dispX = 0;
node.dispY = 0;
}
}
setRandomPositions() {
const box = this.box, nodes = this.nodes, nodesLength = nodes.length + 1,
/**
* Return a repeatable, quasi-random number based on an integer
* input. For the initial positions
* @private
*/
unrandom = (n) => {
let rand = n * n / Math.PI;
rand = rand - Math.floor(rand);
return rand;
};
let node;
// Initial positions:
for (let i = 0, iEnd = nodes.length; i < iEnd; ++i) {
node = nodes[i];
node.plotX = node.prevX = pick(node.plotX, box.width * unrandom(i));
node.plotY = node.prevY = pick(node.plotY, box.height * unrandom(nodesLength + i));
node.dispX = 0;
node.dispY = 0;
}
}
force(name, ...args) {
this.integration[name].apply(this, args);
}
barycenterForces() {
this.getBarycenter();
this.force('barycenter');
}
getBarycenter() {
let systemMass = 0, cx = 0, cy = 0;
for (const node of this.nodes) {
cx += node.plotX * node.mass;
cy += node.plotY * node.mass;
systemMass += node.mass;
}
this.barycenter = {
x: cx,
y: cy,
xFactor: cx / systemMass,
yFactor: cy / systemMass
};
return this.barycenter;
}
barnesHutApproximation(node, quadNode) {
const distanceXY = this.getDistXY(node, quadNode), distanceR = this.vectorLength(distanceXY);
let goDeeper, force;
if (node !== quadNode && distanceR !== 0) {
if (quadNode.isInternal) {
// Internal node:
if (quadNode.boxSize / distanceR <
this.options.theta &&
distanceR !== 0) {
// Treat as an external node:
force = this.repulsiveForce(distanceR, this.k);
this.force('repulsive', node, force * quadNode.mass, distanceXY, distanceR);
goDeeper = false;
}
else {
// Go deeper:
goDeeper = true;
}
}
else {
// External node, direct force:
force = this.repulsiveForce(distanceR, this.k);
this.force('repulsive', node, force * quadNode.mass, distanceXY, distanceR);
}
}
return goDeeper;
}
repulsiveForces() {
if (this.approximation === 'barnes-hut') {
for (const node of this.nodes) {
this.quadTree.visitNodeRecursive(null, (quadNode) => (this.barnesHutApproximation(node, quadNode)));
}
}
else {
let force, distanceR, distanceXY;
for (const node of this.nodes) {
for (const repNode of this.nodes) {
if (
// Node cannot repulse itself:
node !== repNode &&
// Only close nodes affect each other:
// layout.getDistR(node, repNode) < 2 * k &&
// Not dragged:
!node.fixedPosition) {
distanceXY = this.getDistXY(node, repNode);
distanceR = this.vectorLength(distanceXY);
if (distanceR !== 0) {
force = this.repulsiveForce(distanceR, this.k);
this.force('repulsive', node, force * repNode.mass, distanceXY, distanceR);
}
}
}
}
}
}
attractiveForces() {
let distanceXY, distanceR, force;
for (const link of this.links) {
if (link.fromNode && link.toNode) {
distanceXY = this.getDistXY(link.fromNode, link.toNode);
distanceR = this.vectorLength(distanceXY);
if (distanceR !== 0) {
force = this.attractiveForce(distanceR, this.k);
this.force('attractive', link, force, distanceXY, distanceR);
}
}
}
}
applyLimits() {
const nodes = this.nodes;
for (const node of nodes) {
if (node.fixedPosition) {
return;
}
this.integration.integrate(this, node);
this.applyLimitBox(node, this.box);
// Reset displacement:
node.dispX = 0;
node.dispY = 0;
}
}
/**
* External box that nodes should fall. When hitting an edge, node
* should stop or bounce.
* @private
*/
applyLimitBox(node, box) {
const radius = node.radius;
/*
TO DO: Consider elastic collision instead of stopping.
o' means end position when hitting plotting area edge:
- "inelastic":
o
\
______
| o'
| \
| \
- "elastic"/"bounced":
o
\
______
| ^
| / \
|o' \
Euler sample:
if (plotX < 0) {
plotX = 0;
dispX *= -1;
}
if (plotX > box.width) {
plotX = box.width;
dispX *= -1;
}
*/
// Limit X-coordinates:
node.plotX = clamp(node.plotX, box.left + radius, box.width - radius);
// Limit Y-coordinates:
node.plotY = clamp(node.plotY, box.top + radius, box.height - radius);
}
/**
* From "A comparison of simulated annealing cooling strategies" by
* Nourani and Andresen work.
* @private
*/
coolDown(temperature, temperatureStep, currentStep) {
// Logarithmic:
/*
return Math.sqrt(this.nodes.length) -
Math.log(
currentStep * layout.diffTemperature
);
*/
// Exponential:
/*
let alpha = 0.1;
layout.temperature = Math.sqrt(layout.nodes.length) *
Math.pow(alpha, layout.diffTemperature);
*/
// Linear:
return temperature - temperatureStep * currentStep;
}
isStable() {
return Math.abs(this.systemTemperature -
this.prevSystemTemperature) < 0.00001 || this.temperature <= 0;
}
getSystemTemperature() {
let value = 0;
for (const node of this.nodes) {
value += node.temperature;
}
return value;
}
vectorLength(vector) {
return Math.sqrt(vector.x * vector.x + vector.y * vector.y);
}
getDistR(nodeA, nodeB) {
const distance = this.getDistXY(nodeA, nodeB);
return this.vectorLength(distance);
}
getDistXY(nodeA, nodeB) {
const xDist = nodeA.plotX - nodeB.plotX, yDist = nodeA.plotY - nodeB.plotY;
return {
x: xDist,
y: yDist,
absX: Math.abs(xDist),
absY: Math.abs(yDist)
};
}
}
/* *
*
* Default Export
*
* */
return ReingoldFruchtermanLayout;
});
_registerModule(_modules, 'Series/SimulationSeriesUtilities.js', [_modules['Core/Utilities.js'], _modules['Core/Animation/AnimationUtilities.js']], function (U, A) {
/* *
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { merge, syncTimeout } = U;
const { animObject } = A;
/**
* Create a setTimeout for the first drawDataLabels()
* based on the dataLabels.animation.defer value
* for series which have enabled simulation.
* @private
*/
function initDataLabelsDefer() {
const dlOptions = this.options.dataLabels;
// Method drawDataLabels() fires for the first time after
// dataLabels.animation.defer time unless
// the dataLabels.animation = false or dataLabels.defer = false
// or if the simulation is disabled
if (!dlOptions?.defer ||
!this.options.layoutAlgorithm?.enableSimulation) {
this.deferDataLabels = false;
}
else {
syncTimeout(() => {
this.deferDataLabels = false;
}, dlOptions ? animObject(dlOptions.animation).defer : 0);
}
}
/**
* Initialize the SVG group for the DataLabels with correct opacities
* and correct styles so that the animation for the series that have
* simulation enabled works fine.
* @private
*/
function initDataLabels() {
const series = this, dlOptions = series.options.dataLabels;
if (!series.dataLabelsGroup) {
const dataLabelsGroup = this.initDataLabelsGroup();
// Apply the dataLabels.style not only to the
// individual dataLabels but also to the entire group
if (!series.chart.styledMode && dlOptions?.style) {
dataLabelsGroup.css(dlOptions.style);
}
// Initialize the opacity of the group to 0 (start of animation)
dataLabelsGroup.attr({ opacity: 0 });
if (series.visible) { // #2597, #3023, #3024
dataLabelsGroup.show();
}
return dataLabelsGroup;
}
// Place it on first and subsequent (redraw) calls
series.dataLabelsGroup.attr(merge({ opacity: 1 }, this.getPlotBox('data-labels')));
return series.dataLabelsGroup;
}
const DataLabelsDeferUtils = {
initDataLabels,
initDataLabelsDefer
};
return DataLabelsDeferUtils;
});
_registerModule(_modules, 'Series/Networkgraph/NetworkgraphSeries.js', [_modules['Series/DragNodesComposition.js'], _modules['Series/GraphLayoutComposition.js'], _modules['Core/Globals.js'], _modules['Series/Networkgraph/NetworkgraphPoint.js'], _modules['Series/Networkgraph/NetworkgraphSeriesDefaults.js'], _modules['Series/NodesComposition.js'], _modules['Series/Networkgraph/ReingoldFruchtermanLayout.js'], _modules['Core/Series/SeriesRegistry.js'], _modules['Series/SimulationSeriesUtilities.js'], _modules['Core/Utilities.js']], function (DragNodesComposition, GraphLayout, H, NetworkgraphPoint, NetworkgraphSeriesDefaults, NodesComposition, ReingoldFruchtermanLayout, SeriesRegistry, D, U) {
/* *
*
* Networkgraph series
*
* (c) 2010-2024 Paweł Fus
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
const { noop } = H;
const { series: Series, seriesTypes: { column: { prototype: columnProto }, line: { prototype: lineProto } } } = SeriesRegistry;
const { initDataLabels, initDataLabelsDefer } = D;
const { addEvent, defined, extend, merge, pick } = U;
/* *
*
* Class
*
* */
/**
* @private
* @class
* @name Highcharts.seriesTypes.networkgraph
*
* @extends Highcharts.Series
*/
class NetworkgraphSeries extends Series {
constructor() {
/* *
*
* Static Properties
*
* */
super(...arguments);
this.deferDataLabels = true;
}
/* *
*
* Static Functions
*
* */
static compose(ChartClass) {
DragNodesComposition.compose(ChartClass);
ReingoldFruchtermanLayout.compose(ChartClass);
}
/* *
*
* Functions
*
* */
/**
* Defer the layout.
* Each series first registers all nodes and links, then layout
* calculates all nodes positions and calls `series.render()` in every
* simulation step.
*
* Note:
* Animation is done through `requestAnimationFrame` directly, without
* `Highcharts.animate()` use.
* @private
*/
deferLayout() {
const layoutOptions = this.options.layoutAlgorithm, chartOptions = this.chart.options.chart;
let layout, graphLayoutsStorage = this.chart.graphLayoutsStorage, graphLayoutsLookup = this.chart.graphLayoutsLookup;
if (!this.visible) {
return;
}
if (!graphLayoutsStorage) {
this.chart.graphLayoutsStorage = graphLayoutsStorage = {};
this.chart.graphLayoutsLookup = graphLayoutsLookup = [];
}
layout = graphLayoutsStorage[layoutOptions.type];
if (!layout) {
layoutOptions.enableSimulation =
!defined(chartOptions.forExport) ?
layoutOptions.enableSimulation :
!chartOptions.forExport;
graphLayoutsStorage[layoutOptions.type] = layout =
new GraphLayout.layouts[layoutOptions.type]();
layout.init(layoutOptions);
graphLayoutsLookup.splice(layout.index, 0, layout);
}
this.layout = layout;
layout.setArea(0, 0, this.chart.plotWidth, this.chart.plotHeight);
layout.addElementsToCollection([this], layout.series);
layout.addElementsToCollection(this.nodes, layout.nodes);
layout.addElementsToCollection(this.points, layout.links);
}
/**
* @private
*/
destroy() {
if (this.layout) {
this.layout.removeElementFromCollection(this, this.layout.series);
}
NodesComposition.destroy.call(this);
}
/**
* Networkgraph has two separate collections of nodes and lines, render
* dataLabels for both sets:
* @private
*/
drawDataLabels() {
// We defer drawing the dataLabels
// until dataLabels.animation.defer time passes
if (this.deferDataLabels) {
return;
}
const dlOptions = this.options.dataLabels;
let textPath;
if (dlOptions?.textPath) {
textPath = dlOptions.textPath;
}
// Render node labels:
Series.prototype.drawDataLabels.call(this, this.nodes);
// Render link labels:
if (dlOptions?.linkTextPath) {
// If linkTextPath is set, render link labels with linkTextPath
dlOptions.textPath = dlOptions.linkTextPath;
}
Series.prototype.drawDataLabels.call(this, this.data);
// Go back to textPath for nodes
if (dlOptions?.textPath) {
dlOptions.textPath = textPath;
}
}
/**
* Extend generatePoints by adding the nodes, which are Point objects
* but pushed to the this.nodes array.
* @private
*/
generatePoints() {
let node, i;
NodesComposition.generatePoints.apply(this, arguments);
// In networkgraph, it's fine to define standalone nodes, create
// them:
if (this.options.nodes) {
this.options.nodes.forEach(function (nodeOptions) {
if (!this.nodeLookup[nodeOptions.id]) {
this.nodeLookup[nodeOptions.id] =
this.createNode(nodeOptions.id);
}
}, this);
}
for (i = this.nodes.length - 1; i >= 0; i--) {
node = this.nodes[i];
node.degree = node.getDegree();
node.radius = pick(node.marker && node.marker.radius, this.options.marker && this.options.marker.radius, 0);
// If node exists, but it's not available in nodeLookup,
// then it's leftover from previous runs (e.g. setData)
if (!this.nodeLookup[node.id]) {
node.remove();
}
}
this.data.forEach(function (link) {
link.formatPrefix = 'link';
});
this.indexateNodes();
}
/**
* In networkgraph, series.points refers to links,
* but series.nodes refers to actual points.
* @private
*/
getPointsCollection() {
return this.nodes || [];
}
/**
* Set index for each node. Required for proper `node.update()`.
* Note that links are indexated out of the box in `generatePoints()`.
*
* @private
*/
indexateNodes() {
this.nodes.forEach(function (node, index) {
node.index = index;
});
}
/**
* Extend init with base event, which should stop simulation during
* update. After data is updated, `chart.render` resumes the simulation.
* @private
*/
init(chart, options) {
super.init(chart, options);
initDataLabelsDefer.call(this);
addEvent(this, 'updatedData', () => {
if (this.layout) {
this.layout.stop();
}
});
addEvent(this, 'afterUpdate', () => {
this.nodes.forEach((node) => {
if (node && node.series) {
node.resolveColor();
}
});
});
// If the dataLabels.animation.defer time is longer than
// the time it takes for the layout to become stable then
// drawDataLabels would never be called (that's why we force it here)
addEvent(this, 'afterSimulation', function () {
this.deferDataLabels = false;
this.drawDataLabels();
});
return this;
}
/**
* Extend the default marker attribs by using a non-rounded X position,
* otherwise the nodes will jump from pixel to pixel which looks a bit
* jaggy when approaching equilibrium.
* @private
*/
markerAttribs(point, state) {
const attribs = Series.prototype.markerAttribs.call(this, point, state);
// Series.render() is called before initial positions are set:
if (!defined(point.plotY)) {
attribs.y = 0;
}
attribs.x = (point.plotX || 0) - (attribs.width || 0) / 2;
return attribs;
}
/**
* Return the presentational attributes.
* @private
*/
pointAttribs(point, state) {
// By default, only `selected` state is passed on
const pointState = state || point && point.state || 'normal', stateOptions = this.options.states[pointState];
let attribs = Series.prototype.pointAttribs.call(this, point, pointState);
if (point && !point.isNode) {
attribs = point.getLinkAttributes();
// For link, get prefixed names:
if (stateOptions) {
attribs = {
// TO DO: API?
stroke: stateOptions.linkColor || attribs.stroke,
dashstyle: (stateOptions.linkDashStyle || attribs.dashstyle),
opacity: pick(stateOptions.linkOpacity, attribs.opacity),
'stroke-width': stateOptions.linkColor ||
attribs['stroke-width']
};
}
}
return attribs;
}
/**
* Extend the render function to also render this.nodes together with
* the points.
* @private
*/
render() {
const series = this, points = series.points, hoverPoint = series.chart.hoverPoint, dataLabels = [];
// Render markers:
series.points = series.nodes;
lineProto.render.call(this);
series.points = points;
points.forEach(function (point) {
if (point.fromNode && point.toNode) {
point.renderLink();
point.redrawLink();
}
});
if (hoverPoint && hoverPoint.series === series) {
series.redrawHalo(hoverPoint);
}
if (series.chart.hasRendered &&
!series.options.dataLabels.allowOverlap) {
series.nodes.concat(series.points).forEach(function (node) {
if (node.dataLabel) {
dataLabels.push(node.dataLabel);
}
});
series.chart.hideOverlappingLabels(dataLabels);
}
}
/**
* When state should be passed down to all points, concat nodes and
* links and apply this state to all of them.
* @private
*/
setState(state, inherit) {
if (inherit) {
this.points = this.nodes.concat(this.data);
Series.prototype.setState.apply(this, arguments);
this.points = this.data;
}
else {
Series.prototype.setState.apply(this, arguments);
}
// If simulation is done, re-render points with new states:
if (!this.layout.simulation && !state) {
this.render();
}
}
/**
* Run pre-translation and register nodes&links to the deffered layout.
* @private
*/
translate() {
if (!this.processedXData) {
this.processData();
}
this.generatePoints();
this.deferLayout();
this.nodes.forEach(function (node) {
// Draw the links from this node
node.isInside = true;
node.linksFrom.forEach(function (point) {
point.shapeType = 'path';
// Pass test in drawPoints
point.y = 1;
});
});
}
}
NetworkgraphSeries.defaultOptions = merge(Series.defaultOptions, NetworkgraphSeriesDefaults);
extend(NetworkgraphSeries.prototype, {
pointClass: NetworkgraphPoint,
animate: void 0,
directTouch: true,
drawGraph: void 0,
forces: ['barycenter', 'repulsive', 'attractive'],
hasDraggableNodes: true,
isCartesian: false,
noSharedTooltip: true,
pointArrayMap: ['from', 'to'],
requireSorting: false,
trackerGroups: ['group', 'markerGroup', 'dataLabelsGroup'],
initDataLabels: initDataLabels,
buildKDTree: noop,
createNode: NodesComposition.createNode,
drawTracker: columnProto.drawTracker,
onMouseDown: DragNodesComposition.onMouseDown,
onMouseMove: DragNodesComposition.onMouseMove,
onMouseUp: DragNodesComposition.onMouseUp,
redrawHalo: DragNodesComposition.redrawHalo
});
SeriesRegistry.registerSeriesType('networkgraph', NetworkgraphSeries);
/* *
*
* Default Export
*
* */
/* *
*
* API Declarations
*
* */
/**
* Formatter callback function.
*
* @callback Highcharts.SeriesNetworkgraphDataLabelsFormatterCallbackFunction
*
* @param {Highcharts.SeriesNetworkgraphDataLabelsFormatterContextObject|Highcharts.PointLabelObject} this
* Data label context to format
*
* @return {string}
* Formatted data label text
*/
/**
* Context for the formatter function.
*
* @interface Highcharts.SeriesNetworkgraphDataLabelsFormatterContextObject
* @extends Highcharts.PointLabelObject
* @since 7.0.0
*/ /**
* The color of the node.
* @name Highcharts.SeriesNetworkgraphDataLabelsFormatterContextObject#color
* @type {Highcharts.ColorString}
* @since 7.0.0
*/ /**
* The point (node) object. The node name, if defined, is available through
* `this.point.name`. Arrays: `this.point.linksFrom` and `this.point.linksTo`
* contains all nodes connected to this point.
* @name Highcharts.SeriesNetworkgraphDataLabelsFormatterContextObject#point
* @type {Highcharts.Point}
* @since 7.0.0
*/ /**
* The ID of the node.
* @name Highcharts.SeriesNetworkgraphDataLabelsFormatterContextObject#key
* @type {string}
* @since 7.0.0
*/
/**
* Callback that fires after the end of Networkgraph series simulation
* when the layout is stable.
*
* @callback Highcharts.NetworkgraphAfterSimulationCallbackFunction
*
* @param {Highcharts.Series} this
* The series where the event occurred.
*
* @param {global.Event} event
* The event that occurred.
*/
''; // Detach doclets above
return NetworkgraphSeries;
});
_registerModule(_modules, 'masters/modules/networkgraph.src.js', [_modules['Core/Globals.js'], _modules['Series/Networkgraph/NetworkgraphSeries.js']], function (Highcharts, NetworkgraphSeries) {
const G = Highcharts;
NetworkgraphSeries.compose(G.Chart);
return Highcharts;
});
}));