Icard/angular-clarity-master(work.../node_modules/hdr-histogram-js/dist/JsHistogram.js

799 lines
40 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.default = exports.JsHistogram = void 0;
/*
* This is a TypeScript port of the original Java version, which was written by
* Gil Tene as described in
* https://github.com/HdrHistogram/HdrHistogram
* and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
const RecordedValuesIterator_1 = require("./RecordedValuesIterator");
const PercentileIterator_1 = require("./PercentileIterator");
const formatters_1 = require("./formatters");
const ulp_1 = require("./ulp");
const Histogram_1 = require("./Histogram");
const { pow, floor, ceil, log2, max, min } = Math;
class JsHistogram {
constructor(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits) {
this.autoResize = false;
this.startTimeStampMsec = Number.MAX_SAFE_INTEGER;
this.endTimeStampMsec = 0;
this.tag = Histogram_1.NO_TAG;
this.maxValue = 0;
this.minNonZeroValue = Number.MAX_SAFE_INTEGER;
this.identity = 0;
this.highestTrackableValue = 0;
this.lowestDiscernibleValue = 0;
this.numberOfSignificantValueDigits = 0;
this.bucketCount = 0;
this.subBucketCount = 0;
this.countsArrayLength = 0;
this.wordSizeInBytes = 0;
// Verify argument validity
if (lowestDiscernibleValue < 1) {
throw new Error("lowestDiscernibleValue must be >= 1");
}
if (highestTrackableValue < 2 * lowestDiscernibleValue) {
throw new Error(`highestTrackableValue must be >= 2 * lowestDiscernibleValue ( 2 * ${lowestDiscernibleValue} )`);
}
if (numberOfSignificantValueDigits < 0 ||
numberOfSignificantValueDigits > 5) {
throw new Error("numberOfSignificantValueDigits must be between 0 and 5");
}
this.identity = JsHistogram.identityBuilder++;
this.init(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits);
}
incrementTotalCount() {
this._totalCount++;
}
addToTotalCount(value) {
this._totalCount += value;
}
setTotalCount(value) {
this._totalCount = value;
}
/**
* Get the total count of all recorded values in the histogram
* @return the total count of all recorded values in the histogram
*/
get totalCount() {
return this._totalCount;
}
updatedMaxValue(value) {
const internalValue = value + this.unitMagnitudeMask;
this.maxValue = internalValue;
}
updateMinNonZeroValue(value) {
if (value <= this.unitMagnitudeMask) {
return;
}
const internalValue = floor(value / this.lowestDiscernibleValueRounded) *
this.lowestDiscernibleValueRounded;
this.minNonZeroValue = internalValue;
}
init(lowestDiscernibleValue, highestTrackableValue, numberOfSignificantValueDigits) {
this.lowestDiscernibleValue = lowestDiscernibleValue;
this.highestTrackableValue = highestTrackableValue;
this.numberOfSignificantValueDigits = numberOfSignificantValueDigits;
/*
* Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000". It also means that
* it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is NOT ok to be +/- 2 units at 1999. Only
* starting at 2000. So internally, we need to maintain single unit resolution to 2x 10^decimalPoints.
*/
const largestValueWithSingleUnitResolution = 2 * floor(pow(10, numberOfSignificantValueDigits));
this.unitMagnitude = floor(log2(lowestDiscernibleValue));
this.lowestDiscernibleValueRounded = pow(2, this.unitMagnitude);
this.unitMagnitudeMask = this.lowestDiscernibleValueRounded - 1;
// We need to maintain power-of-two subBucketCount (for clean direct indexing) that is large enough to
// provide unit resolution to at least largestValueWithSingleUnitResolution. So figure out
// largestValueWithSingleUnitResolution's nearest power-of-two (rounded up), and use that:
const subBucketCountMagnitude = ceil(log2(largestValueWithSingleUnitResolution));
this.subBucketHalfCountMagnitude =
(subBucketCountMagnitude > 1 ? subBucketCountMagnitude : 1) - 1;
this.subBucketCount = pow(2, this.subBucketHalfCountMagnitude + 1);
this.subBucketHalfCount = this.subBucketCount / 2;
this.subBucketMask =
(floor(this.subBucketCount) - 1) * pow(2, this.unitMagnitude);
this.establishSize(highestTrackableValue);
this.leadingZeroCountBase =
53 - this.unitMagnitude - this.subBucketHalfCountMagnitude - 1;
this.percentileIterator = new PercentileIterator_1.default(this, 1);
this.recordedValuesIterator = new RecordedValuesIterator_1.default(this);
}
/**
* The buckets (each of which has subBucketCount sub-buckets, here assumed to be 2048 as an example) overlap:
*
* <pre>
* The 0'th bucket covers from 0...2047 in multiples of 1, using all 2048 sub-buckets
* The 1'th bucket covers from 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
* The 2'th bucket covers from 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
* ...
* </pre>
*
* Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have 1024 entries (because
* their bottom half overlaps with and is already covered by the all of the previous buckets put together). In other
* words, the k'th bucket could represent 0 * 2^k to 2048 * 2^k in 2048 buckets with 2^k precision, but the midpoint
* of 1024 * 2^k = 2048 * 2^(k-1) = the k-1'th bucket's end, so we would use the previous bucket for those lower
* values as it has better precision.
*/
establishSize(newHighestTrackableValue) {
// establish counts array length:
this.countsArrayLength = this.determineArrayLengthNeeded(newHighestTrackableValue);
// establish exponent range needed to support the trackable value with no overflow:
this.bucketCount = this.getBucketsNeededToCoverValue(newHighestTrackableValue);
// establish the new highest trackable value:
this.highestTrackableValue = newHighestTrackableValue;
}
determineArrayLengthNeeded(highestTrackableValue) {
if (highestTrackableValue < 2 * this.lowestDiscernibleValue) {
throw new Error("highestTrackableValue (" +
highestTrackableValue +
") cannot be < (2 * lowestDiscernibleValue)");
}
//determine counts array length needed:
const countsArrayLength = this.getLengthForNumberOfBuckets(this.getBucketsNeededToCoverValue(highestTrackableValue));
return countsArrayLength;
}
/**
* If we have N such that subBucketCount * 2^N > max value, we need storage for N+1 buckets, each with enough
* slots to hold the top half of the subBucketCount (the lower half is covered by previous buckets), and the +1
* being used for the lower half of the 0'th bucket. Or, equivalently, we need 1 more bucket to capture the max
* value if we consider the sub-bucket length to be halved.
*/
getLengthForNumberOfBuckets(numberOfBuckets) {
const lengthNeeded = (numberOfBuckets + 1) * (this.subBucketCount / 2);
return lengthNeeded;
}
getBucketsNeededToCoverValue(value) {
// the k'th bucket can express from 0 * 2^k to subBucketCount * 2^k in units of 2^k
let smallestUntrackableValue = this.subBucketCount * pow(2, this.unitMagnitude);
// always have at least 1 bucket
let bucketsNeeded = 1;
while (smallestUntrackableValue <= value) {
if (smallestUntrackableValue > Number.MAX_SAFE_INTEGER / 2) {
// TODO check array max size in JavaScript
// next shift will overflow, meaning that bucket could represent values up to ones greater than
// Number.MAX_SAFE_INTEGER, so it's the last bucket
return bucketsNeeded + 1;
}
smallestUntrackableValue = smallestUntrackableValue * 2;
bucketsNeeded++;
}
return bucketsNeeded;
}
/**
* Record a value in the histogram
*
* @param value The value to be recorded
* @throws may throw Error if value is exceeds highestTrackableValue
*/
recordValue(value) {
this.recordSingleValue(value);
}
recordSingleValue(value) {
const countsIndex = this.countsArrayIndex(value);
if (countsIndex >= this.countsArrayLength) {
this.handleRecordException(1, value);
}
else {
this.incrementCountAtIndex(countsIndex);
}
this.updateMinAndMax(value);
this.incrementTotalCount();
}
handleRecordException(count, value) {
if (!this.autoResize) {
throw new Error("Value " + value + " is outside of histogram covered range");
}
this.resize(value);
var countsIndex = this.countsArrayIndex(value);
this.addToCountAtIndex(countsIndex, count);
this.highestTrackableValue = this.highestEquivalentValue(this.valueFromIndex(this.countsArrayLength - 1));
}
countsArrayIndex(value) {
if (value < 0) {
throw new Error("Histogram recorded value cannot be negative.");
}
const bucketIndex = this.getBucketIndex(value);
const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
return this.computeCountsArrayIndex(bucketIndex, subBucketIndex);
}
computeCountsArrayIndex(bucketIndex, subBucketIndex) {
// TODO
//assert(subBucketIndex < subBucketCount);
//assert(bucketIndex == 0 || (subBucketIndex >= subBucketHalfCount));
// Calculate the index for the first entry that will be used in the bucket (halfway through subBucketCount).
// For bucketIndex 0, all subBucketCount entries may be used, but bucketBaseIndex is still set in the middle.
const bucketBaseIndex = (bucketIndex + 1) * pow(2, this.subBucketHalfCountMagnitude);
// Calculate the offset in the bucket. This subtraction will result in a positive value in all buckets except
// the 0th bucket (since a value in that bucket may be less than half the bucket's 0 to subBucketCount range).
// However, this works out since we give bucket 0 twice as much space.
const offsetInBucket = subBucketIndex - this.subBucketHalfCount;
// The following is the equivalent of ((subBucketIndex - subBucketHalfCount) + bucketBaseIndex;
return bucketBaseIndex + offsetInBucket;
}
/**
* @return the lowest (and therefore highest precision) bucket index that can represent the value
*/
getBucketIndex(value) {
// Calculates the number of powers of two by which the value is greater than the biggest value that fits in
// bucket 0. This is the bucket index since each successive bucket can hold a value 2x greater.
// The mask maps small values to bucket 0.
// return this.leadingZeroCountBase - Long.numberOfLeadingZeros(value | subBucketMask);
return max(floor(log2(value)) -
this.subBucketHalfCountMagnitude -
this.unitMagnitude, 0);
}
getSubBucketIndex(value, bucketIndex) {
// For bucketIndex 0, this is just value, so it may be anywhere in 0 to subBucketCount.
// For other bucketIndex, this will always end up in the top half of subBucketCount: assume that for some bucket
// k > 0, this calculation will yield a value in the bottom half of 0 to subBucketCount. Then, because of how
// buckets overlap, it would have also been in the top half of bucket k-1, and therefore would have
// returned k-1 in getBucketIndex(). Since we would then shift it one fewer bits here, it would be twice as big,
// and therefore in the top half of subBucketCount.
return floor(value / pow(2, bucketIndex + this.unitMagnitude));
}
updateMinAndMax(value) {
if (value > this.maxValue) {
this.updatedMaxValue(value);
}
if (value < this.minNonZeroValue && value !== 0) {
this.updateMinNonZeroValue(value);
}
}
/**
* Get the value at a given percentile.
* When the given percentile is &gt; 0.0, the value returned is the value that the given
* percentage of the overall recorded value entries in the histogram are either smaller than
* or equivalent to. When the given percentile is 0.0, the value returned is the value that all value
* entries in the histogram are either larger than or equivalent to.
* <p>
* Note that two values are "equivalent" in this statement if
* {@link org.HdrHistogram.JsHistogram#valuesAreEquivalent} would return true.
*
* @param percentile The percentile for which to return the associated value
* @return The value that the given percentage of the overall recorded value entries in the
* histogram are either smaller than or equivalent to. When the percentile is 0.0, returns the
* value that all value entries in the histogram are either larger than or equivalent to.
*/
getValueAtPercentile(percentile) {
const requestedPercentile = min(percentile, 100); // Truncate down to 100%
// round count up to nearest integer, to ensure that the largest value that the requested percentile
// of overall recorded values is actually included. However, this must be done with care:
//
// First, Compute fp value for count at the requested percentile. Note that fp result end up
// being 1 ulp larger than the correct integer count for this percentile:
const fpCountAtPercentile = (requestedPercentile / 100.0) * this.totalCount;
// Next, round up, but make sure to prevent <= 1 ulp inaccurancies in the above fp math from
// making us skip a count:
const countAtPercentile = max(ceil(fpCountAtPercentile - ulp_1.default(fpCountAtPercentile)), // round up
1 // Make sure we at least reach the first recorded entry
);
let totalToCurrentIndex = 0;
for (let i = 0; i < this.countsArrayLength; i++) {
totalToCurrentIndex += this.getCountAtIndex(i);
if (totalToCurrentIndex >= countAtPercentile) {
var valueAtIndex = this.valueFromIndex(i);
return percentile === 0.0
? this.lowestEquivalentValue(valueAtIndex)
: this.highestEquivalentValue(valueAtIndex);
}
}
return 0;
}
valueFromIndexes(bucketIndex, subBucketIndex) {
return subBucketIndex * pow(2, bucketIndex + this.unitMagnitude);
}
valueFromIndex(index) {
let bucketIndex = floor(index / this.subBucketHalfCount) - 1;
let subBucketIndex = (index % this.subBucketHalfCount) + this.subBucketHalfCount;
if (bucketIndex < 0) {
subBucketIndex -= this.subBucketHalfCount;
bucketIndex = 0;
}
return this.valueFromIndexes(bucketIndex, subBucketIndex);
}
/**
* Get the lowest value that is equivalent to the given value within the histogram's resolution.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The lowest value that is equivalent to the given value within the histogram's resolution.
*/
lowestEquivalentValue(value) {
const bucketIndex = this.getBucketIndex(value);
const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
const thisValueBaseLevel = this.valueFromIndexes(bucketIndex, subBucketIndex);
return thisValueBaseLevel;
}
/**
* Get the highest value that is equivalent to the given value within the histogram's resolution.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The highest value that is equivalent to the given value within the histogram's resolution.
*/
highestEquivalentValue(value) {
return this.nextNonEquivalentValue(value) - 1;
}
/**
* Get the next value that is not equivalent to the given value within the histogram's resolution.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The next value that is not equivalent to the given value within the histogram's resolution.
*/
nextNonEquivalentValue(value) {
return (this.lowestEquivalentValue(value) + this.sizeOfEquivalentValueRange(value));
}
/**
* Get the size (in value units) of the range of values that are equivalent to the given value within the
* histogram's resolution. Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The size of the range of values equivalent to the given value.
*/
sizeOfEquivalentValueRange(value) {
const bucketIndex = this.getBucketIndex(value);
const subBucketIndex = this.getSubBucketIndex(value, bucketIndex);
const distanceToNextValue = pow(2, this.unitMagnitude +
(subBucketIndex >= this.subBucketCount ? bucketIndex + 1 : bucketIndex));
return distanceToNextValue;
}
/**
* Get a value that lies in the middle (rounded up) of the range of values equivalent the given value.
* Where "equivalent" means that value samples recorded for any two
* equivalent values are counted in a common total count.
*
* @param value The given value
* @return The value lies in the middle (rounded up) of the range of values equivalent the given value.
*/
medianEquivalentValue(value) {
return (this.lowestEquivalentValue(value) +
floor(this.sizeOfEquivalentValueRange(value) / 2));
}
/**
* Get the computed mean value of all recorded values in the histogram
*
* @return the mean value (in value units) of the histogram data
*/
get mean() {
if (this.totalCount === 0) {
return 0;
}
this.recordedValuesIterator.reset();
let totalValue = 0;
while (this.recordedValuesIterator.hasNext()) {
const iterationValue = this.recordedValuesIterator.next();
totalValue +=
this.medianEquivalentValue(iterationValue.valueIteratedTo) *
iterationValue.countAtValueIteratedTo;
}
return totalValue / this.totalCount;
}
getStdDeviation(mean = this.mean) {
if (this.totalCount === 0) {
return 0;
}
let geometric_deviation_total = 0.0;
this.recordedValuesIterator.reset();
while (this.recordedValuesIterator.hasNext()) {
const iterationValue = this.recordedValuesIterator.next();
const deviation = this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
geometric_deviation_total +=
deviation * deviation * iterationValue.countAddedInThisIterationStep;
}
const std_deviation = Math.sqrt(geometric_deviation_total / this.totalCount);
return std_deviation;
}
/**
* Get the computed standard deviation of all recorded values in the histogram
*
* @return the standard deviation (in value units) of the histogram data
*/
get stdDeviation() {
if (this.totalCount === 0) {
return 0;
}
const mean = this.mean;
let geometric_deviation_total = 0.0;
this.recordedValuesIterator.reset();
while (this.recordedValuesIterator.hasNext()) {
const iterationValue = this.recordedValuesIterator.next();
const deviation = this.medianEquivalentValue(iterationValue.valueIteratedTo) - mean;
geometric_deviation_total +=
deviation * deviation * iterationValue.countAddedInThisIterationStep;
}
const std_deviation = Math.sqrt(geometric_deviation_total / this.totalCount);
return std_deviation;
}
/**
* Produce textual representation of the value distribution of histogram data by percentile. The distribution is
* output with exponentially increasing resolution, with each exponentially decreasing half-distance containing
* <i>dumpTicksPerHalf</i> percentile reporting tick points.
*
* @param printStream Stream into which the distribution will be output
* <p>
* @param percentileTicksPerHalfDistance The number of reporting points per exponentially decreasing half-distance
* <p>
* @param outputValueUnitScalingRatio The scaling factor by which to divide histogram recorded values units in
* output
* @param useCsvFormat Output in CSV format if true. Otherwise use plain text form.
*/
outputPercentileDistribution(percentileTicksPerHalfDistance = 5, outputValueUnitScalingRatio = 1, useCsvFormat = false) {
let result = "";
if (useCsvFormat) {
result += '"Value","Percentile","TotalCount","1/(1-Percentile)"\n';
}
else {
result += " Value Percentile TotalCount 1/(1-Percentile)\n\n";
}
const iterator = this.percentileIterator;
iterator.reset(percentileTicksPerHalfDistance);
let lineFormatter;
let lastLineFormatter;
if (useCsvFormat) {
const valueFormatter = formatters_1.floatFormatter(0, this.numberOfSignificantValueDigits);
const percentileFormatter = formatters_1.floatFormatter(0, 12);
const lastFormatter = formatters_1.floatFormatter(0, 2);
lineFormatter = (iterationValue) => valueFormatter(iterationValue.valueIteratedTo / outputValueUnitScalingRatio) +
"," +
percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
"," +
iterationValue.totalCountToThisValue +
"," +
lastFormatter(1 / (1 - iterationValue.percentileLevelIteratedTo / 100)) +
"\n";
lastLineFormatter = (iterationValue) => valueFormatter(iterationValue.valueIteratedTo / outputValueUnitScalingRatio) +
"," +
percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
"," +
iterationValue.totalCountToThisValue +
",Infinity\n";
}
else {
const valueFormatter = formatters_1.floatFormatter(12, this.numberOfSignificantValueDigits);
const percentileFormatter = formatters_1.floatFormatter(2, 12);
const totalCountFormatter = formatters_1.integerFormatter(10);
const lastFormatter = formatters_1.floatFormatter(14, 2);
lineFormatter = (iterationValue) => valueFormatter(iterationValue.valueIteratedTo / outputValueUnitScalingRatio) +
" " +
percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
" " +
totalCountFormatter(iterationValue.totalCountToThisValue) +
" " +
lastFormatter(1 / (1 - iterationValue.percentileLevelIteratedTo / 100)) +
"\n";
lastLineFormatter = (iterationValue) => valueFormatter(iterationValue.valueIteratedTo / outputValueUnitScalingRatio) +
" " +
percentileFormatter(iterationValue.percentileLevelIteratedTo / 100) +
" " +
totalCountFormatter(iterationValue.totalCountToThisValue) +
"\n";
}
while (iterator.hasNext()) {
const iterationValue = iterator.next();
if (iterationValue.percentileLevelIteratedTo < 100) {
result += lineFormatter(iterationValue);
}
else {
result += lastLineFormatter(iterationValue);
}
}
if (!useCsvFormat) {
// Calculate and output mean and std. deviation.
// Note: mean/std. deviation numbers are very often completely irrelevant when
// data is extremely non-normal in distribution (e.g. in cases of strong multi-modal
// response time distribution associated with GC pauses). However, reporting these numbers
// can be very useful for contrasting with the detailed percentile distribution
// reported by outputPercentileDistribution(). It is not at all surprising to find
// percentile distributions where results fall many tens or even hundreds of standard
// deviations away from the mean - such results simply indicate that the data sampled
// exhibits a very non-normal distribution, highlighting situations for which the std.
// deviation metric is a useless indicator.
//
const formatter = formatters_1.floatFormatter(12, this.numberOfSignificantValueDigits);
const _mean = this.mean;
const mean = formatter(_mean / outputValueUnitScalingRatio);
const std_deviation = formatter(this.getStdDeviation(_mean) / outputValueUnitScalingRatio);
const max = formatter(this.maxValue / outputValueUnitScalingRatio);
const intFormatter = formatters_1.integerFormatter(12);
const totalCount = intFormatter(this.totalCount);
const bucketCount = intFormatter(this.bucketCount);
const subBucketCount = intFormatter(this.subBucketCount);
result += `#[Mean = ${mean}, StdDeviation = ${std_deviation}]
#[Max = ${max}, Total count = ${totalCount}]
#[Buckets = ${bucketCount}, SubBuckets = ${subBucketCount}]
`;
}
return result;
}
get summary() {
return Histogram_1.toSummary(this);
}
toJSON() {
return this.summary;
}
inspect() {
return this.toString();
}
[Symbol.for("nodejs.util.inspect.custom")]() {
return this.toString();
}
/**
* Provide a (conservatively high) estimate of the Histogram's total footprint in bytes
*
* @return a (conservatively high) estimate of the Histogram's total footprint in bytes
*/
get estimatedFootprintInBytes() {
return this._getEstimatedFootprintInBytes();
}
recordSingleValueWithExpectedInterval(value, expectedIntervalBetweenValueSamples) {
this.recordSingleValue(value);
if (expectedIntervalBetweenValueSamples <= 0) {
return;
}
for (let missingValue = value - expectedIntervalBetweenValueSamples; missingValue >= expectedIntervalBetweenValueSamples; missingValue -= expectedIntervalBetweenValueSamples) {
this.recordSingleValue(missingValue);
}
}
recordCountAtValue(count, value) {
const countsIndex = this.countsArrayIndex(value);
if (countsIndex >= this.countsArrayLength) {
this.handleRecordException(count, value);
}
else {
this.addToCountAtIndex(countsIndex, count);
}
this.updateMinAndMax(value);
this.addToTotalCount(count);
}
/**
* Record a value in the histogram (adding to the value's current count)
*
* @param value The value to be recorded
* @param count The number of occurrences of this value to record
* @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue
*/
recordValueWithCount(value, count) {
this.recordCountAtValue(count, value);
}
/**
* Record a value in the histogram.
* <p>
* To compensate for the loss of sampled values when a recorded value is larger than the expected
* interval between value samples, Histogram will auto-generate an additional series of decreasingly-smaller
* (down to the expectedIntervalBetweenValueSamples) value records.
* <p>
* Note: This is a at-recording correction method, as opposed to the post-recording correction method provided
* by {@link #copyCorrectedForCoordinatedOmission(long)}.
* The two methods are mutually exclusive, and only one of the two should be be used on a given data set to correct
* for the same coordinated omission issue.
* <p>
* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is
* important.
*
* @param value The value to record
* @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add
* auto-generated value records as appropriate if value is larger
* than expectedIntervalBetweenValueSamples
* @throws ArrayIndexOutOfBoundsException (may throw) if value is exceeds highestTrackableValue
*/
recordValueWithExpectedInterval(value, expectedIntervalBetweenValueSamples) {
this.recordSingleValueWithExpectedInterval(value, expectedIntervalBetweenValueSamples);
}
recordValueWithCountAndExpectedInterval(value, count, expectedIntervalBetweenValueSamples) {
this.recordCountAtValue(count, value);
if (expectedIntervalBetweenValueSamples <= 0) {
return;
}
for (let missingValue = value - expectedIntervalBetweenValueSamples; missingValue >= expectedIntervalBetweenValueSamples; missingValue -= expectedIntervalBetweenValueSamples) {
this.recordCountAtValue(count, missingValue);
}
}
/**
* Add the contents of another histogram to this one, while correcting the incoming data for coordinated omission.
* <p>
* To compensate for the loss of sampled values when a recorded value is larger than the expected
* interval between value samples, the values added will include an auto-generated additional series of
* decreasingly-smaller (down to the expectedIntervalBetweenValueSamples) value records for each count found
* in the current histogram that is larger than the expectedIntervalBetweenValueSamples.
*
* Note: This is a post-recording correction method, as opposed to the at-recording correction method provided
* by {@link #recordValueWithExpectedInterval(long, long) recordValueWithExpectedInterval}. The two
* methods are mutually exclusive, and only one of the two should be be used on a given data set to correct
* for the same coordinated omission issue.
* by
* <p>
* See notes in the description of the Histogram calls for an illustration of why this corrective behavior is
* important.
*
* @param otherHistogram The other histogram. highestTrackableValue and largestValueWithSingleUnitResolution must match.
* @param expectedIntervalBetweenValueSamples If expectedIntervalBetweenValueSamples is larger than 0, add
* auto-generated value records as appropriate if value is larger
* than expectedIntervalBetweenValueSamples
* @throws ArrayIndexOutOfBoundsException (may throw) if values exceed highestTrackableValue
*/
addWhileCorrectingForCoordinatedOmission(otherHistogram, expectedIntervalBetweenValueSamples) {
const toHistogram = this;
const otherValues = new RecordedValuesIterator_1.default(otherHistogram);
while (otherValues.hasNext()) {
const v = otherValues.next();
toHistogram.recordValueWithCountAndExpectedInterval(v.valueIteratedTo, v.countAtValueIteratedTo, expectedIntervalBetweenValueSamples);
}
}
/**
* Add the contents of another histogram to this one.
* <p>
* As part of adding the contents, the start/end timestamp range of this histogram will be
* extended to include the start/end timestamp range of the other histogram.
*
* @param otherHistogram The other histogram.
* @throws (may throw) if values in fromHistogram's are
* higher than highestTrackableValue.
*/
add(otherHistogram) {
if (!(otherHistogram instanceof JsHistogram)) {
// should be impossible to be in this situation but actually
// TypeScript has some flaws...
throw new Error("Cannot add a WASM histogram to a regular JS histogram");
}
const highestRecordableValue = this.highestEquivalentValue(this.valueFromIndex(this.countsArrayLength - 1));
if (highestRecordableValue < otherHistogram.maxValue) {
if (!this.autoResize) {
throw new Error("The other histogram includes values that do not fit in this histogram's range.");
}
this.resize(otherHistogram.maxValue);
}
if (this.bucketCount === otherHistogram.bucketCount &&
this.subBucketCount === otherHistogram.subBucketCount &&
this.unitMagnitude === otherHistogram.unitMagnitude) {
// Counts arrays are of the same length and meaning, so we can just iterate and add directly:
let observedOtherTotalCount = 0;
for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
const otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
this.addToCountAtIndex(i, otherCount);
observedOtherTotalCount += otherCount;
}
}
this.setTotalCount(this.totalCount + observedOtherTotalCount);
this.updatedMaxValue(max(this.maxValue, otherHistogram.maxValue));
this.updateMinNonZeroValue(min(this.minNonZeroValue, otherHistogram.minNonZeroValue));
}
else {
// Arrays are not a direct match (or the other could change on the fly in some valid way),
// so we can't just stream through and add them. Instead, go through the array and add each
// non-zero value found at it's proper value:
// Do max value first, to avoid max value updates on each iteration:
const otherMaxIndex = otherHistogram.countsArrayIndex(otherHistogram.maxValue);
let otherCount = otherHistogram.getCountAtIndex(otherMaxIndex);
this.recordCountAtValue(otherCount, otherHistogram.valueFromIndex(otherMaxIndex));
// Record the remaining values, up to but not including the max value:
for (let i = 0; i < otherMaxIndex; i++) {
otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
this.recordCountAtValue(otherCount, otherHistogram.valueFromIndex(i));
}
}
}
this.startTimeStampMsec = min(this.startTimeStampMsec, otherHistogram.startTimeStampMsec);
this.endTimeStampMsec = max(this.endTimeStampMsec, otherHistogram.endTimeStampMsec);
}
/**
* Get the count of recorded values at a specific value (to within the histogram resolution at the value level).
*
* @param value The value for which to provide the recorded count
* @return The total count of values recorded in the histogram within the value range that is
* {@literal >=} lowestEquivalentValue(<i>value</i>) and {@literal <=} highestEquivalentValue(<i>value</i>)
*/
getCountAtValue(value) {
const index = min(max(0, this.countsArrayIndex(value)), this.countsArrayLength - 1);
return this.getCountAtIndex(index);
}
/**
* Subtract the contents of another histogram from this one.
* <p>
* The start/end timestamps of this histogram will remain unchanged.
*
* @param otherHistogram The other histogram.
* @throws ArrayIndexOutOfBoundsException (may throw) if values in otherHistogram's are higher than highestTrackableValue.
*
*/
subtract(otherHistogram) {
const highestRecordableValue = this.valueFromIndex(this.countsArrayLength - 1);
if (!(otherHistogram instanceof JsHistogram)) {
// should be impossible to be in this situation but actually
// TypeScript has some flaws...
throw new Error("Cannot subtract a WASM histogram to a regular JS histogram");
}
if (highestRecordableValue < otherHistogram.maxValue) {
if (!this.autoResize) {
throw new Error("The other histogram includes values that do not fit in this histogram's range.");
}
this.resize(otherHistogram.maxValue);
}
if (this.bucketCount === otherHistogram.bucketCount &&
this.subBucketCount === otherHistogram.subBucketCount &&
this.unitMagnitude === otherHistogram.unitMagnitude) {
// optim
// Counts arrays are of the same length and meaning, so we can just iterate and add directly:
let observedOtherTotalCount = 0;
for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
const otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
this.addToCountAtIndex(i, -otherCount);
observedOtherTotalCount += otherCount;
}
}
this.setTotalCount(this.totalCount - observedOtherTotalCount);
}
else {
for (let i = 0; i < otherHistogram.countsArrayLength; i++) {
const otherCount = otherHistogram.getCountAtIndex(i);
if (otherCount > 0) {
const otherValue = otherHistogram.valueFromIndex(i);
if (this.getCountAtValue(otherValue) < otherCount) {
throw new Error("otherHistogram count (" +
otherCount +
") at value " +
otherValue +
" is larger than this one's (" +
this.getCountAtValue(otherValue) +
")");
}
this.recordCountAtValue(-otherCount, otherValue);
}
}
}
// With subtraction, the max and minNonZero values could have changed:
if (this.getCountAtValue(this.maxValue) <= 0 ||
this.getCountAtValue(this.minNonZeroValue) <= 0) {
this.establishInternalTackingValues();
}
}
establishInternalTackingValues(lengthToCover = this.countsArrayLength) {
this.maxValue = 0;
this.minNonZeroValue = Number.MAX_VALUE;
let maxIndex = -1;
let minNonZeroIndex = -1;
let observedTotalCount = 0;
for (let index = 0; index < lengthToCover; index++) {
const countAtIndex = this.getCountAtIndex(index);
if (countAtIndex > 0) {
observedTotalCount += countAtIndex;
maxIndex = index;
if (minNonZeroIndex == -1 && index != 0) {
minNonZeroIndex = index;
}
}
}
if (maxIndex >= 0) {
this.updatedMaxValue(this.highestEquivalentValue(this.valueFromIndex(maxIndex)));
}
if (minNonZeroIndex >= 0) {
this.updateMinNonZeroValue(this.valueFromIndex(minNonZeroIndex));
}
this.setTotalCount(observedTotalCount);
}
reset() {
this.clearCounts();
this.setTotalCount(0);
this.startTimeStampMsec = 0;
this.endTimeStampMsec = 0;
this.tag = Histogram_1.NO_TAG;
this.maxValue = 0;
this.minNonZeroValue = Number.MAX_SAFE_INTEGER;
}
destroy() {
// no op - not needed here
}
}
exports.JsHistogram = JsHistogram;
exports.default = JsHistogram;
//# sourceMappingURL=JsHistogram.js.map