Icard/angular-clarity-master(work.../node_modules/canvas/lib/DOMMatrix.js

621 lines
18 KiB
JavaScript

'use strict'
const util = require('util')
// DOMMatrix per https://drafts.fxtf.org/geometry/#DOMMatrix
class DOMPoint {
constructor (x, y, z, w) {
if (typeof x === 'object' && x !== null) {
w = x.w
z = x.z
y = x.y
x = x.x
}
this.x = typeof x === 'number' ? x : 0
this.y = typeof y === 'number' ? y : 0
this.z = typeof z === 'number' ? z : 0
this.w = typeof w === 'number' ? w : 1
}
}
// Constants to index into _values (col-major)
const M11 = 0; const M12 = 1; const M13 = 2; const M14 = 3
const M21 = 4; const M22 = 5; const M23 = 6; const M24 = 7
const M31 = 8; const M32 = 9; const M33 = 10; const M34 = 11
const M41 = 12; const M42 = 13; const M43 = 14; const M44 = 15
const DEGREE_PER_RAD = 180 / Math.PI
const RAD_PER_DEGREE = Math.PI / 180
function parseMatrix (init) {
let parsed = init.replace('matrix(', '')
parsed = parsed.split(',', 7) // 6 + 1 to handle too many params
if (parsed.length !== 6) throw new Error(`Failed to parse ${init}`)
parsed = parsed.map(parseFloat)
return [
parsed[0], parsed[1], 0, 0,
parsed[2], parsed[3], 0, 0,
0, 0, 1, 0,
parsed[4], parsed[5], 0, 1
]
}
function parseMatrix3d (init) {
let parsed = init.replace('matrix3d(', '')
parsed = parsed.split(',', 17) // 16 + 1 to handle too many params
if (parsed.length !== 16) throw new Error(`Failed to parse ${init}`)
return parsed.map(parseFloat)
}
function parseTransform (tform) {
const type = tform.split('(', 1)[0]
switch (type) {
case 'matrix':
return parseMatrix(tform)
case 'matrix3d':
return parseMatrix3d(tform)
// TODO This is supposed to support any CSS transform value.
default:
throw new Error(`${type} parsing not implemented`)
}
}
class DOMMatrix {
constructor (init) {
this._is2D = true
this._values = new Float64Array([
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
])
let i
if (typeof init === 'string') { // parse CSS transformList
if (init === '') return // default identity matrix
const tforms = init.split(/\)\s+/, 20).map(parseTransform)
if (tforms.length === 0) return
init = tforms[0]
for (i = 1; i < tforms.length; i++) init = multiply(tforms[i], init)
}
i = 0
if (init && init.length === 6) {
setNumber2D(this, M11, init[i++])
setNumber2D(this, M12, init[i++])
setNumber2D(this, M21, init[i++])
setNumber2D(this, M22, init[i++])
setNumber2D(this, M41, init[i++])
setNumber2D(this, M42, init[i++])
} else if (init && init.length === 16) {
setNumber2D(this, M11, init[i++])
setNumber2D(this, M12, init[i++])
setNumber3D(this, M13, init[i++])
setNumber3D(this, M14, init[i++])
setNumber2D(this, M21, init[i++])
setNumber2D(this, M22, init[i++])
setNumber3D(this, M23, init[i++])
setNumber3D(this, M24, init[i++])
setNumber3D(this, M31, init[i++])
setNumber3D(this, M32, init[i++])
setNumber3D(this, M33, init[i++])
setNumber3D(this, M34, init[i++])
setNumber2D(this, M41, init[i++])
setNumber2D(this, M42, init[i++])
setNumber3D(this, M43, init[i++])
setNumber3D(this, M44, init[i])
} else if (init !== undefined) {
throw new TypeError('Expected string or array.')
}
}
toString () {
return this.is2D
? `matrix(${this.a}, ${this.b}, ${this.c}, ${this.d}, ${this.e}, ${this.f})`
: `matrix3d(${this._values.join(', ')})`
}
multiply (other) {
return newInstance(this._values).multiplySelf(other)
}
multiplySelf (other) {
this._values = multiply(other._values, this._values)
if (!other.is2D) this._is2D = false
return this
}
preMultiplySelf (other) {
this._values = multiply(this._values, other._values)
if (!other.is2D) this._is2D = false
return this
}
translate (tx, ty, tz) {
return newInstance(this._values).translateSelf(tx, ty, tz)
}
translateSelf (tx, ty, tz) {
if (typeof tx !== 'number') tx = 0
if (typeof ty !== 'number') ty = 0
if (typeof tz !== 'number') tz = 0
this._values = multiply([
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
tx, ty, tz, 1
], this._values)
if (tz !== 0) this._is2D = false
return this
}
scale (scaleX, scaleY, scaleZ, originX, originY, originZ) {
return newInstance(this._values).scaleSelf(scaleX, scaleY, scaleZ, originX, originY, originZ)
}
scale3d (scale, originX, originY, originZ) {
return newInstance(this._values).scale3dSelf(scale, originX, originY, originZ)
}
scale3dSelf (scale, originX, originY, originZ) {
return this.scaleSelf(scale, scale, scale, originX, originY, originZ)
}
scaleSelf (scaleX, scaleY, scaleZ, originX, originY, originZ) {
// Not redundant with translate's checks because we need to negate the values later.
if (typeof originX !== 'number') originX = 0
if (typeof originY !== 'number') originY = 0
if (typeof originZ !== 'number') originZ = 0
this.translateSelf(originX, originY, originZ)
if (typeof scaleX !== 'number') scaleX = 1
if (typeof scaleY !== 'number') scaleY = scaleX
if (typeof scaleZ !== 'number') scaleZ = 1
this._values = multiply([
scaleX, 0, 0, 0,
0, scaleY, 0, 0,
0, 0, scaleZ, 0,
0, 0, 0, 1
], this._values)
this.translateSelf(-originX, -originY, -originZ)
if (scaleZ !== 1 || originZ !== 0) this._is2D = false
return this
}
rotateFromVector (x, y) {
return newInstance(this._values).rotateFromVectorSelf(x, y)
}
rotateFromVectorSelf (x, y) {
if (typeof x !== 'number') x = 0
if (typeof y !== 'number') y = 0
const theta = (x === 0 && y === 0) ? 0 : Math.atan2(y, x) * DEGREE_PER_RAD
return this.rotateSelf(theta)
}
rotate (rotX, rotY, rotZ) {
return newInstance(this._values).rotateSelf(rotX, rotY, rotZ)
}
rotateSelf (rotX, rotY, rotZ) {
if (rotY === undefined && rotZ === undefined) {
rotZ = rotX
rotX = rotY = 0
}
if (typeof rotY !== 'number') rotY = 0
if (typeof rotZ !== 'number') rotZ = 0
if (rotX !== 0 || rotY !== 0) this._is2D = false
rotX *= RAD_PER_DEGREE
rotY *= RAD_PER_DEGREE
rotZ *= RAD_PER_DEGREE
let c, s
c = Math.cos(rotZ)
s = Math.sin(rotZ)
this._values = multiply([
c, s, 0, 0,
-s, c, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
], this._values)
c = Math.cos(rotY)
s = Math.sin(rotY)
this._values = multiply([
c, 0, -s, 0,
0, 1, 0, 0,
s, 0, c, 0,
0, 0, 0, 1
], this._values)
c = Math.cos(rotX)
s = Math.sin(rotX)
this._values = multiply([
1, 0, 0, 0,
0, c, s, 0,
0, -s, c, 0,
0, 0, 0, 1
], this._values)
return this
}
rotateAxisAngle (x, y, z, angle) {
return newInstance(this._values).rotateAxisAngleSelf(x, y, z, angle)
}
rotateAxisAngleSelf (x, y, z, angle) {
if (typeof x !== 'number') x = 0
if (typeof y !== 'number') y = 0
if (typeof z !== 'number') z = 0
// Normalize axis
const length = Math.sqrt(x * x + y * y + z * z)
if (length === 0) return this
if (length !== 1) {
x /= length
y /= length
z /= length
}
angle *= RAD_PER_DEGREE
const c = Math.cos(angle)
const s = Math.sin(angle)
const t = 1 - c
const tx = t * x
const ty = t * y
// NB: This is the generic transform. If the axis is a major axis, there are
// faster transforms.
this._values = multiply([
tx * x + c, tx * y + s * z, tx * z - s * y, 0,
tx * y - s * z, ty * y + c, ty * z + s * x, 0,
tx * z + s * y, ty * z - s * x, t * z * z + c, 0,
0, 0, 0, 1
], this._values)
if (x !== 0 || y !== 0) this._is2D = false
return this
}
skewX (sx) {
return newInstance(this._values).skewXSelf(sx)
}
skewXSelf (sx) {
if (typeof sx !== 'number') return this
const t = Math.tan(sx * RAD_PER_DEGREE)
this._values = multiply([
1, 0, 0, 0,
t, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
], this._values)
return this
}
skewY (sy) {
return newInstance(this._values).skewYSelf(sy)
}
skewYSelf (sy) {
if (typeof sy !== 'number') return this
const t = Math.tan(sy * RAD_PER_DEGREE)
this._values = multiply([
1, t, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
], this._values)
return this
}
flipX () {
return newInstance(multiply([
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
], this._values))
}
flipY () {
return newInstance(multiply([
1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
], this._values))
}
inverse () {
return newInstance(this._values).invertSelf()
}
invertSelf () {
const m = this._values
const inv = m.map(v => 0)
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10]
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10]
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9]
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9]
// If the determinant is zero, this matrix cannot be inverted, and all
// values should be set to NaN, with the is2D flag set to false.
const det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12]
if (det === 0) {
this._values = m.map(v => NaN)
this._is2D = false
return this
}
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10]
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10]
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9]
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9]
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6]
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6]
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5]
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5]
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6]
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6]
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5]
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5]
inv.forEach((v, i) => { inv[i] = v / det })
this._values = inv
return this
}
setMatrixValue (transformList) {
const temp = new DOMMatrix(transformList)
this._values = temp._values
this._is2D = temp._is2D
return this
}
transformPoint (point) {
point = new DOMPoint(point)
const x = point.x
const y = point.y
const z = point.z
const w = point.w
const values = this._values
const nx = values[M11] * x + values[M21] * y + values[M31] * z + values[M41] * w
const ny = values[M12] * x + values[M22] * y + values[M32] * z + values[M42] * w
const nz = values[M13] * x + values[M23] * y + values[M33] * z + values[M43] * w
const nw = values[M14] * x + values[M24] * y + values[M34] * z + values[M44] * w
return new DOMPoint(nx, ny, nz, nw)
}
toFloat32Array () {
return Float32Array.from(this._values)
}
toFloat64Array () {
return this._values.slice(0)
}
static fromMatrix (init) {
if (!(init instanceof DOMMatrix)) throw new TypeError('Expected DOMMatrix')
return new DOMMatrix(init._values)
}
static fromFloat32Array (init) {
if (!(init instanceof Float32Array)) throw new TypeError('Expected Float32Array')
return new DOMMatrix(init)
}
static fromFloat64Array (init) {
if (!(init instanceof Float64Array)) throw new TypeError('Expected Float64Array')
return new DOMMatrix(init)
}
[util.inspect.custom || 'inspect'] (depth, options) {
if (depth < 0) return '[DOMMatrix]'
return `DOMMatrix [
a: ${this.a}
b: ${this.b}
c: ${this.c}
d: ${this.d}
e: ${this.e}
f: ${this.f}
m11: ${this.m11}
m12: ${this.m12}
m13: ${this.m13}
m14: ${this.m14}
m21: ${this.m21}
m22: ${this.m22}
m23: ${this.m23}
m23: ${this.m23}
m31: ${this.m31}
m32: ${this.m32}
m33: ${this.m33}
m34: ${this.m34}
m41: ${this.m41}
m42: ${this.m42}
m43: ${this.m43}
m44: ${this.m44}
is2D: ${this.is2D}
isIdentity: ${this.isIdentity} ]`
}
}
/**
* Checks that `value` is a number and sets the value.
*/
function setNumber2D (receiver, index, value) {
if (typeof value !== 'number') throw new TypeError('Expected number')
return (receiver._values[index] = value)
}
/**
* Checks that `value` is a number, sets `_is2D = false` if necessary and sets
* the value.
*/
function setNumber3D (receiver, index, value) {
if (typeof value !== 'number') throw new TypeError('Expected number')
if (index === M33 || index === M44) {
if (value !== 1) receiver._is2D = false
} else if (value !== 0) receiver._is2D = false
return (receiver._values[index] = value)
}
Object.defineProperties(DOMMatrix.prototype, {
m11: { get () { return this._values[M11] }, set (v) { return setNumber2D(this, M11, v) } },
m12: { get () { return this._values[M12] }, set (v) { return setNumber2D(this, M12, v) } },
m13: { get () { return this._values[M13] }, set (v) { return setNumber3D(this, M13, v) } },
m14: { get () { return this._values[M14] }, set (v) { return setNumber3D(this, M14, v) } },
m21: { get () { return this._values[M21] }, set (v) { return setNumber2D(this, M21, v) } },
m22: { get () { return this._values[M22] }, set (v) { return setNumber2D(this, M22, v) } },
m23: { get () { return this._values[M23] }, set (v) { return setNumber3D(this, M23, v) } },
m24: { get () { return this._values[M24] }, set (v) { return setNumber3D(this, M24, v) } },
m31: { get () { return this._values[M31] }, set (v) { return setNumber3D(this, M31, v) } },
m32: { get () { return this._values[M32] }, set (v) { return setNumber3D(this, M32, v) } },
m33: { get () { return this._values[M33] }, set (v) { return setNumber3D(this, M33, v) } },
m34: { get () { return this._values[M34] }, set (v) { return setNumber3D(this, M34, v) } },
m41: { get () { return this._values[M41] }, set (v) { return setNumber2D(this, M41, v) } },
m42: { get () { return this._values[M42] }, set (v) { return setNumber2D(this, M42, v) } },
m43: { get () { return this._values[M43] }, set (v) { return setNumber3D(this, M43, v) } },
m44: { get () { return this._values[M44] }, set (v) { return setNumber3D(this, M44, v) } },
a: { get () { return this.m11 }, set (v) { return (this.m11 = v) } },
b: { get () { return this.m12 }, set (v) { return (this.m12 = v) } },
c: { get () { return this.m21 }, set (v) { return (this.m21 = v) } },
d: { get () { return this.m22 }, set (v) { return (this.m22 = v) } },
e: { get () { return this.m41 }, set (v) { return (this.m41 = v) } },
f: { get () { return this.m42 }, set (v) { return (this.m42 = v) } },
is2D: { get () { return this._is2D } }, // read-only
isIdentity: {
get () {
const values = this._values
return (values[M11] === 1 && values[M12] === 0 && values[M13] === 0 && values[M14] === 0 &&
values[M21] === 0 && values[M22] === 1 && values[M23] === 0 && values[M24] === 0 &&
values[M31] === 0 && values[M32] === 0 && values[M33] === 1 && values[M34] === 0 &&
values[M41] === 0 && values[M42] === 0 && values[M43] === 0 && values[M44] === 1)
}
}
})
/**
* Instantiates a DOMMatrix, bypassing the constructor.
* @param {Float64Array} values Value to assign to `_values`. This is assigned
* without copying (okay because all usages are followed by a multiply).
*/
function newInstance (values) {
const instance = Object.create(DOMMatrix.prototype)
instance.constructor = DOMMatrix
instance._is2D = true
instance._values = values
return instance
}
function multiply (A, B) {
const dest = new Float64Array(16)
for (let i = 0; i < 4; i++) {
for (let j = 0; j < 4; j++) {
let sum = 0
for (let k = 0; k < 4; k++) {
sum += A[i * 4 + k] * B[k * 4 + j]
}
dest[i * 4 + j] = sum
}
}
return dest
}
module.exports = { DOMMatrix, DOMPoint }