Icard/angular-clarity-master(work.../node_modules/d3-hierarchy/dist/d3-hierarchy.js

1411 lines
36 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// https://d3js.org/d3-hierarchy/ v3.1.2 Copyright 2010-2021 Mike Bostock
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
})(this, (function (exports) { 'use strict';
function defaultSeparation$1(a, b) {
return a.parent === b.parent ? 1 : 2;
}
function meanX(children) {
return children.reduce(meanXReduce, 0) / children.length;
}
function meanXReduce(x, c) {
return x + c.x;
}
function maxY(children) {
return 1 + children.reduce(maxYReduce, 0);
}
function maxYReduce(y, c) {
return Math.max(y, c.y);
}
function leafLeft(node) {
var children;
while (children = node.children) node = children[0];
return node;
}
function leafRight(node) {
var children;
while (children = node.children) node = children[children.length - 1];
return node;
}
function cluster() {
var separation = defaultSeparation$1,
dx = 1,
dy = 1,
nodeSize = false;
function cluster(root) {
var previousNode,
x = 0;
// First walk, computing the initial x & y values.
root.eachAfter(function(node) {
var children = node.children;
if (children) {
node.x = meanX(children);
node.y = maxY(children);
} else {
node.x = previousNode ? x += separation(node, previousNode) : 0;
node.y = 0;
previousNode = node;
}
});
var left = leafLeft(root),
right = leafRight(root),
x0 = left.x - separation(left, right) / 2,
x1 = right.x + separation(right, left) / 2;
// Second walk, normalizing x & y to the desired size.
return root.eachAfter(nodeSize ? function(node) {
node.x = (node.x - root.x) * dx;
node.y = (root.y - node.y) * dy;
} : function(node) {
node.x = (node.x - x0) / (x1 - x0) * dx;
node.y = (1 - (root.y ? node.y / root.y : 1)) * dy;
});
}
cluster.separation = function(x) {
return arguments.length ? (separation = x, cluster) : separation;
};
cluster.size = function(x) {
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? null : [dx, dy]);
};
cluster.nodeSize = function(x) {
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? [dx, dy] : null);
};
return cluster;
}
function count(node) {
var sum = 0,
children = node.children,
i = children && children.length;
if (!i) sum = 1;
else while (--i >= 0) sum += children[i].value;
node.value = sum;
}
function node_count() {
return this.eachAfter(count);
}
function node_each(callback, that) {
let index = -1;
for (const node of this) {
callback.call(that, node, ++index, this);
}
return this;
}
function node_eachBefore(callback, that) {
var node = this, nodes = [node], children, i, index = -1;
while (node = nodes.pop()) {
callback.call(that, node, ++index, this);
if (children = node.children) {
for (i = children.length - 1; i >= 0; --i) {
nodes.push(children[i]);
}
}
}
return this;
}
function node_eachAfter(callback, that) {
var node = this, nodes = [node], next = [], children, i, n, index = -1;
while (node = nodes.pop()) {
next.push(node);
if (children = node.children) {
for (i = 0, n = children.length; i < n; ++i) {
nodes.push(children[i]);
}
}
}
while (node = next.pop()) {
callback.call(that, node, ++index, this);
}
return this;
}
function node_find(callback, that) {
let index = -1;
for (const node of this) {
if (callback.call(that, node, ++index, this)) {
return node;
}
}
}
function node_sum(value) {
return this.eachAfter(function(node) {
var sum = +value(node.data) || 0,
children = node.children,
i = children && children.length;
while (--i >= 0) sum += children[i].value;
node.value = sum;
});
}
function node_sort(compare) {
return this.eachBefore(function(node) {
if (node.children) {
node.children.sort(compare);
}
});
}
function node_path(end) {
var start = this,
ancestor = leastCommonAncestor(start, end),
nodes = [start];
while (start !== ancestor) {
start = start.parent;
nodes.push(start);
}
var k = nodes.length;
while (end !== ancestor) {
nodes.splice(k, 0, end);
end = end.parent;
}
return nodes;
}
function leastCommonAncestor(a, b) {
if (a === b) return a;
var aNodes = a.ancestors(),
bNodes = b.ancestors(),
c = null;
a = aNodes.pop();
b = bNodes.pop();
while (a === b) {
c = a;
a = aNodes.pop();
b = bNodes.pop();
}
return c;
}
function node_ancestors() {
var node = this, nodes = [node];
while (node = node.parent) {
nodes.push(node);
}
return nodes;
}
function node_descendants() {
return Array.from(this);
}
function node_leaves() {
var leaves = [];
this.eachBefore(function(node) {
if (!node.children) {
leaves.push(node);
}
});
return leaves;
}
function node_links() {
var root = this, links = [];
root.each(function(node) {
if (node !== root) { // Dont include the roots parent, if any.
links.push({source: node.parent, target: node});
}
});
return links;
}
function* node_iterator() {
var node = this, current, next = [node], children, i, n;
do {
current = next.reverse(), next = [];
while (node = current.pop()) {
yield node;
if (children = node.children) {
for (i = 0, n = children.length; i < n; ++i) {
next.push(children[i]);
}
}
}
} while (next.length);
}
function hierarchy(data, children) {
if (data instanceof Map) {
data = [undefined, data];
if (children === undefined) children = mapChildren;
} else if (children === undefined) {
children = objectChildren;
}
var root = new Node$1(data),
node,
nodes = [root],
child,
childs,
i,
n;
while (node = nodes.pop()) {
if ((childs = children(node.data)) && (n = (childs = Array.from(childs)).length)) {
node.children = childs;
for (i = n - 1; i >= 0; --i) {
nodes.push(child = childs[i] = new Node$1(childs[i]));
child.parent = node;
child.depth = node.depth + 1;
}
}
}
return root.eachBefore(computeHeight);
}
function node_copy() {
return hierarchy(this).eachBefore(copyData);
}
function objectChildren(d) {
return d.children;
}
function mapChildren(d) {
return Array.isArray(d) ? d[1] : null;
}
function copyData(node) {
if (node.data.value !== undefined) node.value = node.data.value;
node.data = node.data.data;
}
function computeHeight(node) {
var height = 0;
do node.height = height;
while ((node = node.parent) && (node.height < ++height));
}
function Node$1(data) {
this.data = data;
this.depth =
this.height = 0;
this.parent = null;
}
Node$1.prototype = hierarchy.prototype = {
constructor: Node$1,
count: node_count,
each: node_each,
eachAfter: node_eachAfter,
eachBefore: node_eachBefore,
find: node_find,
sum: node_sum,
sort: node_sort,
path: node_path,
ancestors: node_ancestors,
descendants: node_descendants,
leaves: node_leaves,
links: node_links,
copy: node_copy,
[Symbol.iterator]: node_iterator
};
function optional(f) {
return f == null ? null : required(f);
}
function required(f) {
if (typeof f !== "function") throw new Error;
return f;
}
function constantZero() {
return 0;
}
function constant(x) {
return function() {
return x;
};
}
// https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
const a = 1664525;
const c = 1013904223;
const m = 4294967296; // 2^32
function lcg() {
let s = 1;
return () => (s = (a * s + c) % m) / m;
}
function array(x) {
return typeof x === "object" && "length" in x
? x // Array, TypedArray, NodeList, array-like
: Array.from(x); // Map, Set, iterable, string, or anything else
}
function shuffle(array, random) {
let m = array.length,
t,
i;
while (m) {
i = random() * m-- | 0;
t = array[m];
array[m] = array[i];
array[i] = t;
}
return array;
}
function enclose(circles) {
return packEncloseRandom(circles, lcg());
}
function packEncloseRandom(circles, random) {
var i = 0, n = (circles = shuffle(Array.from(circles), random)).length, B = [], p, e;
while (i < n) {
p = circles[i];
if (e && enclosesWeak(e, p)) ++i;
else e = encloseBasis(B = extendBasis(B, p)), i = 0;
}
return e;
}
function extendBasis(B, p) {
var i, j;
if (enclosesWeakAll(p, B)) return [p];
// If we get here then B must have at least one element.
for (i = 0; i < B.length; ++i) {
if (enclosesNot(p, B[i])
&& enclosesWeakAll(encloseBasis2(B[i], p), B)) {
return [B[i], p];
}
}
// If we get here then B must have at least two elements.
for (i = 0; i < B.length - 1; ++i) {
for (j = i + 1; j < B.length; ++j) {
if (enclosesNot(encloseBasis2(B[i], B[j]), p)
&& enclosesNot(encloseBasis2(B[i], p), B[j])
&& enclosesNot(encloseBasis2(B[j], p), B[i])
&& enclosesWeakAll(encloseBasis3(B[i], B[j], p), B)) {
return [B[i], B[j], p];
}
}
}
// If we get here then something is very wrong.
throw new Error;
}
function enclosesNot(a, b) {
var dr = a.r - b.r, dx = b.x - a.x, dy = b.y - a.y;
return dr < 0 || dr * dr < dx * dx + dy * dy;
}
function enclosesWeak(a, b) {
var dr = a.r - b.r + Math.max(a.r, b.r, 1) * 1e-9, dx = b.x - a.x, dy = b.y - a.y;
return dr > 0 && dr * dr > dx * dx + dy * dy;
}
function enclosesWeakAll(a, B) {
for (var i = 0; i < B.length; ++i) {
if (!enclosesWeak(a, B[i])) {
return false;
}
}
return true;
}
function encloseBasis(B) {
switch (B.length) {
case 1: return encloseBasis1(B[0]);
case 2: return encloseBasis2(B[0], B[1]);
case 3: return encloseBasis3(B[0], B[1], B[2]);
}
}
function encloseBasis1(a) {
return {
x: a.x,
y: a.y,
r: a.r
};
}
function encloseBasis2(a, b) {
var x1 = a.x, y1 = a.y, r1 = a.r,
x2 = b.x, y2 = b.y, r2 = b.r,
x21 = x2 - x1, y21 = y2 - y1, r21 = r2 - r1,
l = Math.sqrt(x21 * x21 + y21 * y21);
return {
x: (x1 + x2 + x21 / l * r21) / 2,
y: (y1 + y2 + y21 / l * r21) / 2,
r: (l + r1 + r2) / 2
};
}
function encloseBasis3(a, b, c) {
var x1 = a.x, y1 = a.y, r1 = a.r,
x2 = b.x, y2 = b.y, r2 = b.r,
x3 = c.x, y3 = c.y, r3 = c.r,
a2 = x1 - x2,
a3 = x1 - x3,
b2 = y1 - y2,
b3 = y1 - y3,
c2 = r2 - r1,
c3 = r3 - r1,
d1 = x1 * x1 + y1 * y1 - r1 * r1,
d2 = d1 - x2 * x2 - y2 * y2 + r2 * r2,
d3 = d1 - x3 * x3 - y3 * y3 + r3 * r3,
ab = a3 * b2 - a2 * b3,
xa = (b2 * d3 - b3 * d2) / (ab * 2) - x1,
xb = (b3 * c2 - b2 * c3) / ab,
ya = (a3 * d2 - a2 * d3) / (ab * 2) - y1,
yb = (a2 * c3 - a3 * c2) / ab,
A = xb * xb + yb * yb - 1,
B = 2 * (r1 + xa * xb + ya * yb),
C = xa * xa + ya * ya - r1 * r1,
r = -(Math.abs(A) > 1e-6 ? (B + Math.sqrt(B * B - 4 * A * C)) / (2 * A) : C / B);
return {
x: x1 + xa + xb * r,
y: y1 + ya + yb * r,
r: r
};
}
function place(b, a, c) {
var dx = b.x - a.x, x, a2,
dy = b.y - a.y, y, b2,
d2 = dx * dx + dy * dy;
if (d2) {
a2 = a.r + c.r, a2 *= a2;
b2 = b.r + c.r, b2 *= b2;
if (a2 > b2) {
x = (d2 + b2 - a2) / (2 * d2);
y = Math.sqrt(Math.max(0, b2 / d2 - x * x));
c.x = b.x - x * dx - y * dy;
c.y = b.y - x * dy + y * dx;
} else {
x = (d2 + a2 - b2) / (2 * d2);
y = Math.sqrt(Math.max(0, a2 / d2 - x * x));
c.x = a.x + x * dx - y * dy;
c.y = a.y + x * dy + y * dx;
}
} else {
c.x = a.x + c.r;
c.y = a.y;
}
}
function intersects(a, b) {
var dr = a.r + b.r - 1e-6, dx = b.x - a.x, dy = b.y - a.y;
return dr > 0 && dr * dr > dx * dx + dy * dy;
}
function score(node) {
var a = node._,
b = node.next._,
ab = a.r + b.r,
dx = (a.x * b.r + b.x * a.r) / ab,
dy = (a.y * b.r + b.y * a.r) / ab;
return dx * dx + dy * dy;
}
function Node(circle) {
this._ = circle;
this.next = null;
this.previous = null;
}
function packSiblingsRandom(circles, random) {
if (!(n = (circles = array(circles)).length)) return 0;
var a, b, c, n, aa, ca, i, j, k, sj, sk;
// Place the first circle.
a = circles[0], a.x = 0, a.y = 0;
if (!(n > 1)) return a.r;
// Place the second circle.
b = circles[1], a.x = -b.r, b.x = a.r, b.y = 0;
if (!(n > 2)) return a.r + b.r;
// Place the third circle.
place(b, a, c = circles[2]);
// Initialize the front-chain using the first three circles a, b and c.
a = new Node(a), b = new Node(b), c = new Node(c);
a.next = c.previous = b;
b.next = a.previous = c;
c.next = b.previous = a;
// Attempt to place each remaining circle…
pack: for (i = 3; i < n; ++i) {
place(a._, b._, c = circles[i]), c = new Node(c);
// Find the closest intersecting circle on the front-chain, if any.
// “Closeness” is determined by linear distance along the front-chain.
// “Ahead” or “behind” is likewise determined by linear distance.
j = b.next, k = a.previous, sj = b._.r, sk = a._.r;
do {
if (sj <= sk) {
if (intersects(j._, c._)) {
b = j, a.next = b, b.previous = a, --i;
continue pack;
}
sj += j._.r, j = j.next;
} else {
if (intersects(k._, c._)) {
a = k, a.next = b, b.previous = a, --i;
continue pack;
}
sk += k._.r, k = k.previous;
}
} while (j !== k.next);
// Success! Insert the new circle c between a and b.
c.previous = a, c.next = b, a.next = b.previous = b = c;
// Compute the new closest circle pair to the centroid.
aa = score(a);
while ((c = c.next) !== b) {
if ((ca = score(c)) < aa) {
a = c, aa = ca;
}
}
b = a.next;
}
// Compute the enclosing circle of the front chain.
a = [b._], c = b; while ((c = c.next) !== b) a.push(c._); c = packEncloseRandom(a, random);
// Translate the circles to put the enclosing circle around the origin.
for (i = 0; i < n; ++i) a = circles[i], a.x -= c.x, a.y -= c.y;
return c.r;
}
function siblings(circles) {
packSiblingsRandom(circles, lcg());
return circles;
}
function defaultRadius(d) {
return Math.sqrt(d.value);
}
function index$1() {
var radius = null,
dx = 1,
dy = 1,
padding = constantZero;
function pack(root) {
const random = lcg();
root.x = dx / 2, root.y = dy / 2;
if (radius) {
root.eachBefore(radiusLeaf(radius))
.eachAfter(packChildrenRandom(padding, 0.5, random))
.eachBefore(translateChild(1));
} else {
root.eachBefore(radiusLeaf(defaultRadius))
.eachAfter(packChildrenRandom(constantZero, 1, random))
.eachAfter(packChildrenRandom(padding, root.r / Math.min(dx, dy), random))
.eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r)));
}
return root;
}
pack.radius = function(x) {
return arguments.length ? (radius = optional(x), pack) : radius;
};
pack.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy];
};
pack.padding = function(x) {
return arguments.length ? (padding = typeof x === "function" ? x : constant(+x), pack) : padding;
};
return pack;
}
function radiusLeaf(radius) {
return function(node) {
if (!node.children) {
node.r = Math.max(0, +radius(node) || 0);
}
};
}
function packChildrenRandom(padding, k, random) {
return function(node) {
if (children = node.children) {
var children,
i,
n = children.length,
r = padding(node) * k || 0,
e;
if (r) for (i = 0; i < n; ++i) children[i].r += r;
e = packSiblingsRandom(children, random);
if (r) for (i = 0; i < n; ++i) children[i].r -= r;
node.r = e + r;
}
};
}
function translateChild(k) {
return function(node) {
var parent = node.parent;
node.r *= k;
if (parent) {
node.x = parent.x + k * node.x;
node.y = parent.y + k * node.y;
}
};
}
function roundNode(node) {
node.x0 = Math.round(node.x0);
node.y0 = Math.round(node.y0);
node.x1 = Math.round(node.x1);
node.y1 = Math.round(node.y1);
}
function treemapDice(parent, x0, y0, x1, y1) {
var nodes = parent.children,
node,
i = -1,
n = nodes.length,
k = parent.value && (x1 - x0) / parent.value;
while (++i < n) {
node = nodes[i], node.y0 = y0, node.y1 = y1;
node.x0 = x0, node.x1 = x0 += node.value * k;
}
}
function partition() {
var dx = 1,
dy = 1,
padding = 0,
round = false;
function partition(root) {
var n = root.height + 1;
root.x0 =
root.y0 = padding;
root.x1 = dx;
root.y1 = dy / n;
root.eachBefore(positionNode(dy, n));
if (round) root.eachBefore(roundNode);
return root;
}
function positionNode(dy, n) {
return function(node) {
if (node.children) {
treemapDice(node, node.x0, dy * (node.depth + 1) / n, node.x1, dy * (node.depth + 2) / n);
}
var x0 = node.x0,
y0 = node.y0,
x1 = node.x1 - padding,
y1 = node.y1 - padding;
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
node.x0 = x0;
node.y0 = y0;
node.x1 = x1;
node.y1 = y1;
};
}
partition.round = function(x) {
return arguments.length ? (round = !!x, partition) : round;
};
partition.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], partition) : [dx, dy];
};
partition.padding = function(x) {
return arguments.length ? (padding = +x, partition) : padding;
};
return partition;
}
var preroot = {depth: -1},
ambiguous = {},
imputed = {};
function defaultId(d) {
return d.id;
}
function defaultParentId(d) {
return d.parentId;
}
function stratify() {
var id = defaultId,
parentId = defaultParentId,
path;
function stratify(data) {
var nodes = Array.from(data),
currentId = id,
currentParentId = parentId,
n,
d,
i,
root,
parent,
node,
nodeId,
nodeKey,
nodeByKey = new Map;
if (path != null) {
const I = nodes.map((d, i) => normalize(path(d, i, data)));
const P = I.map(parentof);
const S = new Set(I).add("");
for (const i of P) {
if (!S.has(i)) {
S.add(i);
I.push(i);
P.push(parentof(i));
nodes.push(imputed);
}
}
currentId = (_, i) => I[i];
currentParentId = (_, i) => P[i];
}
for (i = 0, n = nodes.length; i < n; ++i) {
d = nodes[i], node = nodes[i] = new Node$1(d);
if ((nodeId = currentId(d, i, data)) != null && (nodeId += "")) {
nodeKey = node.id = nodeId;
nodeByKey.set(nodeKey, nodeByKey.has(nodeKey) ? ambiguous : node);
}
if ((nodeId = currentParentId(d, i, data)) != null && (nodeId += "")) {
node.parent = nodeId;
}
}
for (i = 0; i < n; ++i) {
node = nodes[i];
if (nodeId = node.parent) {
parent = nodeByKey.get(nodeId);
if (!parent) throw new Error("missing: " + nodeId);
if (parent === ambiguous) throw new Error("ambiguous: " + nodeId);
if (parent.children) parent.children.push(node);
else parent.children = [node];
node.parent = parent;
} else {
if (root) throw new Error("multiple roots");
root = node;
}
}
if (!root) throw new Error("no root");
// When imputing internal nodes, only introduce roots if needed.
// Then replace the imputed marker data with null.
if (path != null) {
while (root.data === imputed && root.children.length === 1) {
root = root.children[0], --n;
}
for (let i = nodes.length - 1; i >= 0; --i) {
node = nodes[i];
if (node.data !== imputed) break;
node.data = null;
}
}
root.parent = preroot;
root.eachBefore(function(node) { node.depth = node.parent.depth + 1; --n; }).eachBefore(computeHeight);
root.parent = null;
if (n > 0) throw new Error("cycle");
return root;
}
stratify.id = function(x) {
return arguments.length ? (id = optional(x), stratify) : id;
};
stratify.parentId = function(x) {
return arguments.length ? (parentId = optional(x), stratify) : parentId;
};
stratify.path = function(x) {
return arguments.length ? (path = optional(x), stratify) : path;
};
return stratify;
}
// To normalize a path, we coerce to a string, strip the trailing slash if any
// (as long as the trailing slash is not immediately preceded by another slash),
// and add leading slash if missing.
function normalize(path) {
path = `${path}`;
let i = path.length;
if (slash(path, i - 1) && !slash(path, i - 2)) path = path.slice(0, -1);
return path[0] === "/" ? path : `/${path}`;
}
// Walk backwards to find the first slash that is not the leading slash, e.g.:
// "/foo/bar" ⇥ "/foo", "/foo" ⇥ "/", "/" ↦ "". (The root is special-cased
// because the id of the root must be a truthy value.)
function parentof(path) {
let i = path.length;
if (i < 2) return "";
while (--i > 1) if (slash(path, i)) break;
return path.slice(0, i);
}
// Slashes can be escaped; to determine whether a slash is a path delimiter, we
// count the number of preceding backslashes escaping the forward slash: an odd
// number indicates an escaped forward slash.
function slash(path, i) {
if (path[i] === "/") {
let k = 0;
while (i > 0 && path[--i] === "\\") ++k;
if ((k & 1) === 0) return true;
}
return false;
}
function defaultSeparation(a, b) {
return a.parent === b.parent ? 1 : 2;
}
// function radialSeparation(a, b) {
// return (a.parent === b.parent ? 1 : 2) / a.depth;
// }
// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function nextLeft(v) {
var children = v.children;
return children ? children[0] : v.t;
}
// This function works analogously to nextLeft.
function nextRight(v) {
var children = v.children;
return children ? children[children.length - 1] : v.t;
}
// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function moveSubtree(wm, wp, shift) {
var change = shift / (wp.i - wm.i);
wp.c -= change;
wp.s += shift;
wm.c += change;
wp.z += shift;
wp.m += shift;
}
// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function executeShifts(v) {
var shift = 0,
change = 0,
children = v.children,
i = children.length,
w;
while (--i >= 0) {
w = children[i];
w.z += shift;
w.m += shift;
shift += w.s + (change += w.c);
}
}
// If vi-s ancestor is a sibling of v, returns vi-s ancestor. Otherwise,
// returns the specified (default) ancestor.
function nextAncestor(vim, v, ancestor) {
return vim.a.parent === v.parent ? vim.a : ancestor;
}
function TreeNode(node, i) {
this._ = node;
this.parent = null;
this.children = null;
this.A = null; // default ancestor
this.a = this; // ancestor
this.z = 0; // prelim
this.m = 0; // mod
this.c = 0; // change
this.s = 0; // shift
this.t = null; // thread
this.i = i; // number
}
TreeNode.prototype = Object.create(Node$1.prototype);
function treeRoot(root) {
var tree = new TreeNode(root, 0),
node,
nodes = [tree],
child,
children,
i,
n;
while (node = nodes.pop()) {
if (children = node._.children) {
node.children = new Array(n = children.length);
for (i = n - 1; i >= 0; --i) {
nodes.push(child = node.children[i] = new TreeNode(children[i], i));
child.parent = node;
}
}
}
(tree.parent = new TreeNode(null, 0)).children = [tree];
return tree;
}
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
function tree() {
var separation = defaultSeparation,
dx = 1,
dy = 1,
nodeSize = null;
function tree(root) {
var t = treeRoot(root);
// Compute the layout using Buchheim et al.s algorithm.
t.eachAfter(firstWalk), t.parent.m = -t.z;
t.eachBefore(secondWalk);
// If a fixed node size is specified, scale x and y.
if (nodeSize) root.eachBefore(sizeNode);
// If a fixed tree size is specified, scale x and y based on the extent.
// Compute the left-most, right-most, and depth-most nodes for extents.
else {
var left = root,
right = root,
bottom = root;
root.eachBefore(function(node) {
if (node.x < left.x) left = node;
if (node.x > right.x) right = node;
if (node.depth > bottom.depth) bottom = node;
});
var s = left === right ? 1 : separation(left, right) / 2,
tx = s - left.x,
kx = dx / (right.x + s + tx),
ky = dy / (bottom.depth || 1);
root.eachBefore(function(node) {
node.x = (node.x + tx) * kx;
node.y = node.depth * ky;
});
}
return root;
}
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
// applied recursively to the children of v, as well as the function
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
// node v is placed to the midpoint of its outermost children.
function firstWalk(v) {
var children = v.children,
siblings = v.parent.children,
w = v.i ? siblings[v.i - 1] : null;
if (children) {
executeShifts(v);
var midpoint = (children[0].z + children[children.length - 1].z) / 2;
if (w) {
v.z = w.z + separation(v._, w._);
v.m = v.z - midpoint;
} else {
v.z = midpoint;
}
} else if (w) {
v.z = w.z + separation(v._, w._);
}
v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
}
// Computes all real x-coordinates by summing up the modifiers recursively.
function secondWalk(v) {
v._.x = v.z + v.parent.m;
v.m += v.parent.m;
}
// The core of the algorithm. Here, a new subtree is combined with the
// previous subtrees. Threads are used to traverse the inside and outside
// contours of the left and right subtree up to the highest common level. The
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
// superscript o means outside and i means inside, the subscript - means left
// subtree and + means right subtree. For summing up the modifiers along the
// contour, we use respective variables si+, si-, so-, and so+. Whenever two
// nodes of the inside contours conflict, we compute the left one of the
// greatest uncommon ancestors using the function ANCESTOR and call MOVE
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
// Finally, we add a new thread (if necessary).
function apportion(v, w, ancestor) {
if (w) {
var vip = v,
vop = v,
vim = w,
vom = vip.parent.children[0],
sip = vip.m,
sop = vop.m,
sim = vim.m,
som = vom.m,
shift;
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) {
vom = nextLeft(vom);
vop = nextRight(vop);
vop.a = v;
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
if (shift > 0) {
moveSubtree(nextAncestor(vim, v, ancestor), v, shift);
sip += shift;
sop += shift;
}
sim += vim.m;
sip += vip.m;
som += vom.m;
sop += vop.m;
}
if (vim && !nextRight(vop)) {
vop.t = vim;
vop.m += sim - sop;
}
if (vip && !nextLeft(vom)) {
vom.t = vip;
vom.m += sip - som;
ancestor = v;
}
}
return ancestor;
}
function sizeNode(node) {
node.x *= dx;
node.y = node.depth * dy;
}
tree.separation = function(x) {
return arguments.length ? (separation = x, tree) : separation;
};
tree.size = function(x) {
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]);
};
tree.nodeSize = function(x) {
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null);
};
return tree;
}
function treemapSlice(parent, x0, y0, x1, y1) {
var nodes = parent.children,
node,
i = -1,
n = nodes.length,
k = parent.value && (y1 - y0) / parent.value;
while (++i < n) {
node = nodes[i], node.x0 = x0, node.x1 = x1;
node.y0 = y0, node.y1 = y0 += node.value * k;
}
}
var phi = (1 + Math.sqrt(5)) / 2;
function squarifyRatio(ratio, parent, x0, y0, x1, y1) {
var rows = [],
nodes = parent.children,
row,
nodeValue,
i0 = 0,
i1 = 0,
n = nodes.length,
dx, dy,
value = parent.value,
sumValue,
minValue,
maxValue,
newRatio,
minRatio,
alpha,
beta;
while (i0 < n) {
dx = x1 - x0, dy = y1 - y0;
// Find the next non-empty node.
do sumValue = nodes[i1++].value; while (!sumValue && i1 < n);
minValue = maxValue = sumValue;
alpha = Math.max(dy / dx, dx / dy) / (value * ratio);
beta = sumValue * sumValue * alpha;
minRatio = Math.max(maxValue / beta, beta / minValue);
// Keep adding nodes while the aspect ratio maintains or improves.
for (; i1 < n; ++i1) {
sumValue += nodeValue = nodes[i1].value;
if (nodeValue < minValue) minValue = nodeValue;
if (nodeValue > maxValue) maxValue = nodeValue;
beta = sumValue * sumValue * alpha;
newRatio = Math.max(maxValue / beta, beta / minValue);
if (newRatio > minRatio) { sumValue -= nodeValue; break; }
minRatio = newRatio;
}
// Position and record the row orientation.
rows.push(row = {value: sumValue, dice: dx < dy, children: nodes.slice(i0, i1)});
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += dy * sumValue / value : y1);
else treemapSlice(row, x0, y0, value ? x0 += dx * sumValue / value : x1, y1);
value -= sumValue, i0 = i1;
}
return rows;
}
var squarify = (function custom(ratio) {
function squarify(parent, x0, y0, x1, y1) {
squarifyRatio(ratio, parent, x0, y0, x1, y1);
}
squarify.ratio = function(x) {
return custom((x = +x) > 1 ? x : 1);
};
return squarify;
})(phi);
function index() {
var tile = squarify,
round = false,
dx = 1,
dy = 1,
paddingStack = [0],
paddingInner = constantZero,
paddingTop = constantZero,
paddingRight = constantZero,
paddingBottom = constantZero,
paddingLeft = constantZero;
function treemap(root) {
root.x0 =
root.y0 = 0;
root.x1 = dx;
root.y1 = dy;
root.eachBefore(positionNode);
paddingStack = [0];
if (round) root.eachBefore(roundNode);
return root;
}
function positionNode(node) {
var p = paddingStack[node.depth],
x0 = node.x0 + p,
y0 = node.y0 + p,
x1 = node.x1 - p,
y1 = node.y1 - p;
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
node.x0 = x0;
node.y0 = y0;
node.x1 = x1;
node.y1 = y1;
if (node.children) {
p = paddingStack[node.depth + 1] = paddingInner(node) / 2;
x0 += paddingLeft(node) - p;
y0 += paddingTop(node) - p;
x1 -= paddingRight(node) - p;
y1 -= paddingBottom(node) - p;
if (x1 < x0) x0 = x1 = (x0 + x1) / 2;
if (y1 < y0) y0 = y1 = (y0 + y1) / 2;
tile(node, x0, y0, x1, y1);
}
}
treemap.round = function(x) {
return arguments.length ? (round = !!x, treemap) : round;
};
treemap.size = function(x) {
return arguments.length ? (dx = +x[0], dy = +x[1], treemap) : [dx, dy];
};
treemap.tile = function(x) {
return arguments.length ? (tile = required(x), treemap) : tile;
};
treemap.padding = function(x) {
return arguments.length ? treemap.paddingInner(x).paddingOuter(x) : treemap.paddingInner();
};
treemap.paddingInner = function(x) {
return arguments.length ? (paddingInner = typeof x === "function" ? x : constant(+x), treemap) : paddingInner;
};
treemap.paddingOuter = function(x) {
return arguments.length ? treemap.paddingTop(x).paddingRight(x).paddingBottom(x).paddingLeft(x) : treemap.paddingTop();
};
treemap.paddingTop = function(x) {
return arguments.length ? (paddingTop = typeof x === "function" ? x : constant(+x), treemap) : paddingTop;
};
treemap.paddingRight = function(x) {
return arguments.length ? (paddingRight = typeof x === "function" ? x : constant(+x), treemap) : paddingRight;
};
treemap.paddingBottom = function(x) {
return arguments.length ? (paddingBottom = typeof x === "function" ? x : constant(+x), treemap) : paddingBottom;
};
treemap.paddingLeft = function(x) {
return arguments.length ? (paddingLeft = typeof x === "function" ? x : constant(+x), treemap) : paddingLeft;
};
return treemap;
}
function binary(parent, x0, y0, x1, y1) {
var nodes = parent.children,
i, n = nodes.length,
sum, sums = new Array(n + 1);
for (sums[0] = sum = i = 0; i < n; ++i) {
sums[i + 1] = sum += nodes[i].value;
}
partition(0, n, parent.value, x0, y0, x1, y1);
function partition(i, j, value, x0, y0, x1, y1) {
if (i >= j - 1) {
var node = nodes[i];
node.x0 = x0, node.y0 = y0;
node.x1 = x1, node.y1 = y1;
return;
}
var valueOffset = sums[i],
valueTarget = (value / 2) + valueOffset,
k = i + 1,
hi = j - 1;
while (k < hi) {
var mid = k + hi >>> 1;
if (sums[mid] < valueTarget) k = mid + 1;
else hi = mid;
}
if ((valueTarget - sums[k - 1]) < (sums[k] - valueTarget) && i + 1 < k) --k;
var valueLeft = sums[k] - valueOffset,
valueRight = value - valueLeft;
if ((x1 - x0) > (y1 - y0)) {
var xk = value ? (x0 * valueRight + x1 * valueLeft) / value : x1;
partition(i, k, valueLeft, x0, y0, xk, y1);
partition(k, j, valueRight, xk, y0, x1, y1);
} else {
var yk = value ? (y0 * valueRight + y1 * valueLeft) / value : y1;
partition(i, k, valueLeft, x0, y0, x1, yk);
partition(k, j, valueRight, x0, yk, x1, y1);
}
}
}
function sliceDice(parent, x0, y0, x1, y1) {
(parent.depth & 1 ? treemapSlice : treemapDice)(parent, x0, y0, x1, y1);
}
var resquarify = (function custom(ratio) {
function resquarify(parent, x0, y0, x1, y1) {
if ((rows = parent._squarify) && (rows.ratio === ratio)) {
var rows,
row,
nodes,
i,
j = -1,
n,
m = rows.length,
value = parent.value;
while (++j < m) {
row = rows[j], nodes = row.children;
for (i = row.value = 0, n = nodes.length; i < n; ++i) row.value += nodes[i].value;
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += (y1 - y0) * row.value / value : y1);
else treemapSlice(row, x0, y0, value ? x0 += (x1 - x0) * row.value / value : x1, y1);
value -= row.value;
}
} else {
parent._squarify = rows = squarifyRatio(ratio, parent, x0, y0, x1, y1);
rows.ratio = ratio;
}
}
resquarify.ratio = function(x) {
return custom((x = +x) > 1 ? x : 1);
};
return resquarify;
})(phi);
exports.Node = Node$1;
exports.cluster = cluster;
exports.hierarchy = hierarchy;
exports.pack = index$1;
exports.packEnclose = enclose;
exports.packSiblings = siblings;
exports.partition = partition;
exports.stratify = stratify;
exports.tree = tree;
exports.treemap = index;
exports.treemapBinary = binary;
exports.treemapDice = treemapDice;
exports.treemapResquarify = resquarify;
exports.treemapSlice = treemapSlice;
exports.treemapSliceDice = sliceDice;
exports.treemapSquarify = squarify;
Object.defineProperty(exports, '__esModule', { value: true });
}));