Icard/angular-clarity-master(work.../node_modules/highcharts/es-modules/Maps/Projection.js

558 lines
23 KiB
JavaScript
Raw Normal View History

2024-07-16 14:55:36 +00:00
/* *
*
* (c) 2021 Torstein Honsi
*
* License: www.highcharts.com/license
*
* !!!!!!! SOURCE GETS TRANSPILED BY TYPESCRIPT. EDIT TS FILE ONLY. !!!!!!!
*
* */
'use strict';
import PC from '../Core/Geometry/PolygonClip.js';
const { clipLineString, clipPolygon } = PC;
import ProjectionRegistry from './Projections/ProjectionRegistry.js';
import U from '../Core/Utilities.js';
const { clamp, erase } = U;
/* *
*
* Constants
*
* */
const deg2rad = Math.PI * 2 / 360,
// Safe padding on either side of the antimeridian to avoid points being
// projected to the wrong side of the plane
floatCorrection = 0.000001;
/* *
*
* Functions
*
* */
/**
* Keep longitude within -180 and 180. This is faster than using the modulo
* operator, and preserves the distinction between -180 and 180.
* @private
*/
function wrapLon(lon) {
// Replacing the if's with while would increase the range, but make it prone
// to crashes on bad data
if (lon < -180) {
lon += 360;
}
if (lon > 180) {
lon -= 360;
}
return lon;
}
/* *
*
* Class
*
* */
class Projection {
/* *
*
* Static Functions
*
* */
/**
* Add a projection definition to the registry, accessible by its `name`.
* @private
*/
static add(name, definition) {
Projection.registry[name] = definition;
}
/**
* Calculate the great circle between two given coordinates.
* @private
*/
static greatCircle(point1, point2, inclusive) {
const { atan2, cos, sin, sqrt } = Math, lat1 = point1[1] * deg2rad, lon1 = point1[0] * deg2rad, lat2 = point2[1] * deg2rad, lon2 = point2[0] * deg2rad, deltaLat = lat2 - lat1, deltaLng = lon2 - lon1, calcA = sin(deltaLat / 2) * sin(deltaLat / 2) +
cos(lat1) * cos(lat2) * sin(deltaLng / 2) * sin(deltaLng / 2), calcB = 2 * atan2(sqrt(calcA), sqrt(1 - calcA)), distance = calcB * 6371e3, // In meters
jumps = Math.round(distance / 500000), // 500 km each jump
lineString = [];
if (inclusive) {
lineString.push(point1);
}
if (jumps > 1) {
const step = 1 / jumps;
for (let fraction = step; fraction < 0.999; // Account for float errors
fraction += step) {
const A = sin((1 - fraction) * calcB) / sin(calcB), B = sin(fraction * calcB) / sin(calcB), x = A * cos(lat1) * cos(lon1) + B * cos(lat2) * cos(lon2), y = A * cos(lat1) * sin(lon1) + B * cos(lat2) * sin(lon2), z = A * sin(lat1) + B * sin(lat2), lat3 = atan2(z, sqrt(x * x + y * y)), lon3 = atan2(y, x);
lineString.push([lon3 / deg2rad, lat3 / deg2rad]);
}
}
if (inclusive) {
lineString.push(point2);
}
return lineString;
}
static insertGreatCircles(poly) {
let i = poly.length - 1;
while (i--) {
// Distance in degrees, either in lon or lat. Avoid heavy
// calculation of true distance.
const roughDistance = Math.max(Math.abs(poly[i][0] - poly[i + 1][0]), Math.abs(poly[i][1] - poly[i + 1][1]));
if (roughDistance > 10) {
const greatCircle = Projection.greatCircle(poly[i], poly[i + 1]);
if (greatCircle.length) {
poly.splice(i + 1, 0, ...greatCircle);
}
}
}
}
static toString(options) {
const { name, rotation } = options || {};
return [name, rotation && rotation.join(',')].join(';');
}
/* *
*
* Constructor
*
* */
constructor(options = {}) {
// Whether the chart has points, lines or polygons given as coordinates
// with positive up, as opposed to paths in the SVG plane with positive
// down.
this.hasCoordinates = false;
// Whether the chart has true projection as opposed to pre-projected geojson
// as in the legacy map collection.
this.hasGeoProjection = false;
this.maxLatitude = 90;
this.options = options;
const { name, projectedBounds, rotation } = options;
this.rotator = rotation ? this.getRotator(rotation) : void 0;
const ProjectionDefinition = name ? Projection.registry[name] : void 0;
if (ProjectionDefinition) {
this.def = new ProjectionDefinition(options);
}
const { def, rotator } = this;
if (def) {
this.maxLatitude = def.maxLatitude || 90;
this.hasGeoProjection = true;
}
if (rotator && def) {
this.forward = (lonLat) => def.forward(rotator.forward(lonLat));
this.inverse = (xy) => rotator.inverse(def.inverse(xy));
}
else if (def) {
this.forward = (lonLat) => def.forward(lonLat);
this.inverse = (xy) => def.inverse(xy);
}
else if (rotator) {
this.forward = rotator.forward;
this.inverse = rotator.inverse;
}
// Projected bounds/clipping
this.bounds = projectedBounds === 'world' ?
def && def.bounds :
projectedBounds;
}
/* *
*
* Functions
*
* */
lineIntersectsBounds(line) {
const { x1, x2, y1, y2 } = this.bounds || {};
const getIntersect = (line, dim, val) => {
const [p1, p2] = line, otherDim = dim ? 0 : 1;
// Check if points are on either side of the line
if (typeof val === 'number' && p1[dim] >= val !== p2[dim] >= val) {
const fraction = ((val - p1[dim]) / (p2[dim] - p1[dim])), crossingVal = p1[otherDim] +
fraction * (p2[otherDim] - p1[otherDim]);
return dim ? [crossingVal, val] : [val, crossingVal];
}
};
let intersection, ret = line[0];
if ((intersection = getIntersect(line, 0, x1))) {
ret = intersection;
// Assuming line[1] was originally outside, replace it with the
// intersection point so that the horizontal intersection will
// be correct.
line[1] = intersection;
}
else if ((intersection = getIntersect(line, 0, x2))) {
ret = intersection;
line[1] = intersection;
}
if ((intersection = getIntersect(line, 1, y1))) {
ret = intersection;
}
else if ((intersection = getIntersect(line, 1, y2))) {
ret = intersection;
}
return ret;
}
/**
* Take the rotation options and returns the appropriate projection
* functions.
* @private
*/
getRotator(rotation) {
const deltaLambda = rotation[0] * deg2rad, deltaPhi = (rotation[1] || 0) * deg2rad, deltaGamma = (rotation[2] || 0) * deg2rad;
const cosDeltaPhi = Math.cos(deltaPhi), sinDeltaPhi = Math.sin(deltaPhi), cosDeltaGamma = Math.cos(deltaGamma), sinDeltaGamma = Math.sin(deltaGamma);
if (deltaLambda === 0 && deltaPhi === 0 && deltaGamma === 0) {
// Don't waste processing time
return;
}
return {
forward: (lonLat) => {
// Lambda (lon) rotation
const lon = lonLat[0] * deg2rad + deltaLambda;
// Phi (lat) and gamma rotation
const lat = lonLat[1] * deg2rad, cosLat = Math.cos(lat), x = Math.cos(lon) * cosLat, y = Math.sin(lon) * cosLat, sinLat = Math.sin(lat), k = sinLat * cosDeltaPhi + x * sinDeltaPhi;
return [
Math.atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - sinLat * sinDeltaPhi) / deg2rad,
Math.asin(k * cosDeltaGamma + y * sinDeltaGamma) / deg2rad
];
},
inverse: (rLonLat) => {
// Lambda (lon) unrotation
const lon = rLonLat[0] * deg2rad;
// Phi (lat) and gamma unrotation
const lat = rLonLat[1] * deg2rad, cosLat = Math.cos(lat), x = Math.cos(lon) * cosLat, y = Math.sin(lon) * cosLat, sinLat = Math.sin(lat), k = sinLat * cosDeltaGamma - y * sinDeltaGamma;
return [
(Math.atan2(y * cosDeltaGamma + sinLat * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi) - deltaLambda) / deg2rad,
Math.asin(k * cosDeltaPhi - x * sinDeltaPhi) / deg2rad
];
}
};
}
/**
* Project a lonlat coordinate position to xy. Dynamically overridden when
* projection is set.
* @private
*/
forward(lonLat) {
return lonLat;
}
/**
* Unproject an xy chart coordinate position to lonlat. Dynamically
* overridden when projection is set.
* @private
*/
inverse(xy) {
return xy;
}
cutOnAntimeridian(poly, isPolygon) {
const antimeridian = 180, intersections = [];
const polygons = [poly];
for (let i = 0, iEnd = poly.length; i < iEnd; ++i) {
const lonLat = poly[i];
let previousLonLat = poly[i - 1];
if (!i) {
if (!isPolygon) {
continue;
}
// Else, wrap to beginning
previousLonLat = poly[poly.length - 1];
}
const lon1 = previousLonLat[0], lon2 = lonLat[0];
if (
// Both points, after rotating for antimeridian, are on the far
// side of the Earth
(lon1 < -90 || lon1 > 90) &&
(lon2 < -90 || lon2 > 90) &&
// ... and on either side of the plane
(lon1 > 0) !== (lon2 > 0)) {
// Interpolate to the intersection latitude
const fraction = clamp((antimeridian - (lon1 + 360) % 360) /
((lon2 + 360) % 360 - (lon1 + 360) % 360), 0, 1), lat = (previousLonLat[1] +
fraction * (lonLat[1] - previousLonLat[1]));
intersections.push({
i,
lat,
direction: lon1 < 0 ? 1 : -1,
previousLonLat,
lonLat
});
}
}
let polarIntersection;
if (intersections.length) {
if (isPolygon) {
// Simplified use of the even-odd rule, if there is an odd
// amount of intersections between the polygon and the
// antimeridian, the pole is inside the polygon. Applies
// primarily to Antarctica.
if (intersections.length % 2 === 1) {
polarIntersection = intersections.slice().sort((a, b) => Math.abs(b.lat) - Math.abs(a.lat))[0];
erase(intersections, polarIntersection);
}
// Pull out slices of the polygon that is on the opposite side
// of the antimeridian compared to the starting point
let i = intersections.length - 2;
while (i >= 0) {
const index = intersections[i].i;
const lonPlus = wrapLon(antimeridian +
intersections[i].direction * floatCorrection);
const lonMinus = wrapLon(antimeridian -
intersections[i].direction * floatCorrection);
const slice = poly.splice(index, intersections[i + 1].i - index,
// Add interpolated points close to the cut
...Projection.greatCircle([lonPlus, intersections[i].lat], [lonPlus, intersections[i + 1].lat], true));
// Add interpolated points close to the cut
slice.push(...Projection.greatCircle([lonMinus, intersections[i + 1].lat], [lonMinus, intersections[i].lat], true));
polygons.push(slice);
i -= 2;
}
// Insert dummy points close to the pole
if (polarIntersection) {
for (let i = 0; i < polygons.length; i++) {
const { direction, lat } = polarIntersection, poly = polygons[i], indexOf = poly.indexOf(polarIntersection.lonLat);
if (indexOf > -1) {
const polarLatitude = (lat < 0 ? -1 : 1) *
this.maxLatitude;
const lon1 = wrapLon(antimeridian +
direction * floatCorrection);
const lon2 = wrapLon(antimeridian -
direction * floatCorrection);
const polarSegment = Projection.greatCircle([lon1, lat], [lon1, polarLatitude], true);
// Circle around the pole point in order to make
// polygon clipping right. Without this, Antarctica
// would wrap the wrong way in an LLC projection
// with parallels [30, 40].
for (let lon = lon1 + 120 * direction; lon > -180 && lon < 180; lon += 120 * direction) {
polarSegment.push([lon, polarLatitude]);
}
polarSegment.push(...Projection.greatCircle([lon2, polarLatitude], [lon2, polarIntersection.lat], true));
poly.splice(indexOf, 0, ...polarSegment);
break;
}
}
}
// Map lines, not closed
}
else {
let i = intersections.length;
while (i--) {
const index = intersections[i].i;
const slice = poly.splice(index, poly.length,
// Add interpolated point close to the cut
[
wrapLon(antimeridian +
intersections[i].direction * floatCorrection),
intersections[i].lat
]);
// Add interpolated point close to the cut
slice.unshift([
wrapLon(antimeridian -
intersections[i].direction * floatCorrection),
intersections[i].lat
]);
polygons.push(slice);
}
}
}
return polygons;
}
/**
* Take a GeoJSON geometry and return a translated SVGPath.
* @private
*/
path(geometry) {
const { bounds, def, rotator } = this;
const antimeridian = 180;
const path = [];
const isPolygon = geometry.type === 'Polygon' ||
geometry.type === 'MultiPolygon';
// @todo: It doesn't really have to do with whether north is
// positive. It depends on whether the coordinates are
// pre-projected.
const hasGeoProjection = this.hasGeoProjection;
// Detect whether we need to do antimeridian cutting and clipping to
// bounds. The alternative (currently for Orthographic) is to apply a
// clip angle.
const projectingToPlane = !def || def.antimeridianCutting !== false;
// We need to rotate in a separate step before applying antimeridian
// cutting
const preclip = projectingToPlane ? rotator : void 0;
const postclip = projectingToPlane ? (def || this) : this;
let boundsPolygon;
if (bounds) {
boundsPolygon = [
[bounds.x1, bounds.y1],
[bounds.x2, bounds.y1],
[bounds.x2, bounds.y2],
[bounds.x1, bounds.y2]
];
}
const addToPath = (polygon) => {
// Create a copy of the original coordinates. The copy applies a
// correction of points close to the antimeridian in order to
// prevent the points to be projected to the wrong side of the
// plane. Float errors in topojson or in the projection may cause
// that.
const poly = polygon.map((lonLat) => {
if (projectingToPlane) {
if (preclip) {
lonLat = preclip.forward(lonLat);
}
let lon = lonLat[0];
if (Math.abs(lon - antimeridian) < floatCorrection) {
if (lon < antimeridian) {
lon = antimeridian - floatCorrection;
}
else {
lon = antimeridian + floatCorrection;
}
}
lonLat = [lon, lonLat[1]];
}
return lonLat;
});
let polygons = [poly];
if (hasGeoProjection) {
// Insert great circles into long straight lines
Projection.insertGreatCircles(poly);
if (projectingToPlane) {
polygons = this.cutOnAntimeridian(poly, isPolygon);
}
}
polygons.forEach((poly) => {
if (poly.length < 2) {
return;
}
let movedTo = false;
let firstValidLonLat;
let lastValidLonLat;
let gap = false;
const pushToPath = (point) => {
if (!movedTo) {
path.push(['M', point[0], point[1]]);
movedTo = true;
}
else {
path.push(['L', point[0], point[1]]);
}
};
let someOutside = false, someInside = false;
let points = poly.map((lonLat) => {
const xy = postclip.forward(lonLat);
if (xy.outside) {
someOutside = true;
}
else {
someInside = true;
}
// Mercator projects pole points to Infinity, and
// clipPolygon is not able to handle it.
if (xy[1] === Infinity) {
xy[1] = 10e9;
}
else if (xy[1] === -Infinity) {
xy[1] = -10e9;
}
return xy;
});
if (projectingToPlane) {
// Wrap around in order for pointInPolygon to work
if (isPolygon) {
points.push(points[0]);
}
if (someOutside) {
// All points are outside
if (!someInside) {
return;
}
// Some inside, some outside. Clip to the bounds.
if (boundsPolygon) {
// Polygons
if (isPolygon) {
points = clipPolygon(points, boundsPolygon);
// Linestrings
}
else if (bounds) {
clipLineString(points, boundsPolygon)
.forEach((points) => {
movedTo = false;
points.forEach(pushToPath);
});
return;
}
}
}
points.forEach(pushToPath);
// For orthographic projection, or when a clipAngle applies
}
else {
for (let i = 0; i < points.length; i++) {
const lonLat = poly[i], point = points[i];
if (!point.outside) {
// In order to be able to interpolate if the first
// or last point is invalid (on the far side of the
// globe in an orthographic projection), we need to
// push the first valid point to the end of the
// polygon.
if (isPolygon && !firstValidLonLat) {
firstValidLonLat = lonLat;
poly.push(lonLat);
points.push(point);
}
// When entering the first valid point after a gap
// of invalid points, typically on the far side of
// the globe in an orthographic projection.
if (gap && lastValidLonLat) {
// For areas, in an orthographic projection, the
// great circle between two visible points will
// be close to the horizon. A possible exception
// may be when the two points are on opposite
// sides of the globe. It that poses a problem,
// we may have to rewrite this to use the small
// circle related to the current lon0 and lat0.
if (isPolygon && hasGeoProjection) {
const greatCircle = Projection.greatCircle(lastValidLonLat, lonLat);
greatCircle.forEach((lonLat) => pushToPath(postclip.forward(lonLat)));
// For lines, just jump over the gap
}
else {
movedTo = false;
}
}
pushToPath(point);
lastValidLonLat = lonLat;
gap = false;
}
else {
gap = true;
}
}
}
});
};
if (geometry.type === 'LineString') {
addToPath(geometry.coordinates);
}
else if (geometry.type === 'MultiLineString') {
geometry.coordinates.forEach((c) => addToPath(c));
}
else if (geometry.type === 'Polygon') {
geometry.coordinates.forEach((c) => addToPath(c));
if (path.length) {
path.push(['Z']);
}
}
else if (geometry.type === 'MultiPolygon') {
geometry.coordinates.forEach((polygons) => {
polygons.forEach((c) => addToPath(c));
});
if (path.length) {
path.push(['Z']);
}
}
return path;
}
}
/* *
*
* Static Properties
*
* */
Projection.registry = ProjectionRegistry;
/* *
*
* Default Export
*
* */
export default Projection;