Icard/angular-clarity-master(work.../node_modules/ramda/es/mathMod.js

51 lines
1.3 KiB
JavaScript
Raw Normal View History

2024-07-16 15:23:22 +00:00
import _curry2 from "./internal/_curry2.js";
import _isInteger from "./internal/_isInteger.js";
/**
* `mathMod` behaves like the modulo operator should mathematically, unlike the
* `%` operator (and by extension, [`R.modulo`](#modulo)). So while
* `-17 % 5` is `-2`, `mathMod(-17, 5)` is `3`. `mathMod` requires Integer
* arguments, and returns NaN when the modulus is zero or negative.
*
* @func
* @memberOf R
* @since v0.3.0
* @category Math
* @sig Number -> Number -> Number
* @param {Number} m The dividend.
* @param {Number} p the modulus.
* @return {Number} The result of `b mod a`.
* @see R.modulo
* @example
*
* R.mathMod(-17, 5); //=> 3
* R.mathMod(17, 5); //=> 2
* R.mathMod(17, -5); //=> NaN
* R.mathMod(17, 0); //=> NaN
* R.mathMod(17.2, 5); //=> NaN
* R.mathMod(17, 5.3); //=> NaN
*
* const clock = R.mathMod(R.__, 12);
* clock(15); //=> 3
* clock(24); //=> 0
*
* const seventeenMod = R.mathMod(17);
* seventeenMod(3); //=> 2
* seventeenMod(4); //=> 1
* seventeenMod(10); //=> 7
*/
var mathMod =
/*#__PURE__*/
_curry2(function mathMod(m, p) {
if (!_isInteger(m)) {
return NaN;
}
if (!_isInteger(p) || p < 1) {
return NaN;
}
return (m % p + p) % p;
});
export default mathMod;