170 lines
4.9 KiB
JavaScript
170 lines
4.9 KiB
JavaScript
|
// https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock
|
|||
|
(function (global, factory) {
|
|||
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
|
|||
|
typeof define === 'function' && define.amd ? define(['exports'], factory) :
|
|||
|
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
|
|||
|
})(this, (function (exports) { 'use strict';
|
|||
|
|
|||
|
const pi = Math.PI,
|
|||
|
tau = 2 * pi,
|
|||
|
epsilon = 1e-6,
|
|||
|
tauEpsilon = tau - epsilon;
|
|||
|
|
|||
|
function append(strings) {
|
|||
|
this._ += strings[0];
|
|||
|
for (let i = 1, n = strings.length; i < n; ++i) {
|
|||
|
this._ += arguments[i] + strings[i];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
function appendRound(digits) {
|
|||
|
let d = Math.floor(digits);
|
|||
|
if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
|
|||
|
if (d > 15) return append;
|
|||
|
const k = 10 ** d;
|
|||
|
return function(strings) {
|
|||
|
this._ += strings[0];
|
|||
|
for (let i = 1, n = strings.length; i < n; ++i) {
|
|||
|
this._ += Math.round(arguments[i] * k) / k + strings[i];
|
|||
|
}
|
|||
|
};
|
|||
|
}
|
|||
|
|
|||
|
class Path {
|
|||
|
constructor(digits) {
|
|||
|
this._x0 = this._y0 = // start of current subpath
|
|||
|
this._x1 = this._y1 = null; // end of current subpath
|
|||
|
this._ = "";
|
|||
|
this._append = digits == null ? append : appendRound(digits);
|
|||
|
}
|
|||
|
moveTo(x, y) {
|
|||
|
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
|
|||
|
}
|
|||
|
closePath() {
|
|||
|
if (this._x1 !== null) {
|
|||
|
this._x1 = this._x0, this._y1 = this._y0;
|
|||
|
this._append`Z`;
|
|||
|
}
|
|||
|
}
|
|||
|
lineTo(x, y) {
|
|||
|
this._append`L${this._x1 = +x},${this._y1 = +y}`;
|
|||
|
}
|
|||
|
quadraticCurveTo(x1, y1, x, y) {
|
|||
|
this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
|
|||
|
}
|
|||
|
bezierCurveTo(x1, y1, x2, y2, x, y) {
|
|||
|
this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
|
|||
|
}
|
|||
|
arcTo(x1, y1, x2, y2, r) {
|
|||
|
x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;
|
|||
|
|
|||
|
// Is the radius negative? Error.
|
|||
|
if (r < 0) throw new Error(`negative radius: ${r}`);
|
|||
|
|
|||
|
let x0 = this._x1,
|
|||
|
y0 = this._y1,
|
|||
|
x21 = x2 - x1,
|
|||
|
y21 = y2 - y1,
|
|||
|
x01 = x0 - x1,
|
|||
|
y01 = y0 - y1,
|
|||
|
l01_2 = x01 * x01 + y01 * y01;
|
|||
|
|
|||
|
// Is this path empty? Move to (x1,y1).
|
|||
|
if (this._x1 === null) {
|
|||
|
this._append`M${this._x1 = x1},${this._y1 = y1}`;
|
|||
|
}
|
|||
|
|
|||
|
// Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
|
|||
|
else if (!(l01_2 > epsilon));
|
|||
|
|
|||
|
// Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
|
|||
|
// Equivalently, is (x1,y1) coincident with (x2,y2)?
|
|||
|
// Or, is the radius zero? Line to (x1,y1).
|
|||
|
else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {
|
|||
|
this._append`L${this._x1 = x1},${this._y1 = y1}`;
|
|||
|
}
|
|||
|
|
|||
|
// Otherwise, draw an arc!
|
|||
|
else {
|
|||
|
let x20 = x2 - x0,
|
|||
|
y20 = y2 - y0,
|
|||
|
l21_2 = x21 * x21 + y21 * y21,
|
|||
|
l20_2 = x20 * x20 + y20 * y20,
|
|||
|
l21 = Math.sqrt(l21_2),
|
|||
|
l01 = Math.sqrt(l01_2),
|
|||
|
l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
|
|||
|
t01 = l / l01,
|
|||
|
t21 = l / l21;
|
|||
|
|
|||
|
// If the start tangent is not coincident with (x0,y0), line to.
|
|||
|
if (Math.abs(t01 - 1) > epsilon) {
|
|||
|
this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
|
|||
|
}
|
|||
|
|
|||
|
this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
|
|||
|
}
|
|||
|
}
|
|||
|
arc(x, y, r, a0, a1, ccw) {
|
|||
|
x = +x, y = +y, r = +r, ccw = !!ccw;
|
|||
|
|
|||
|
// Is the radius negative? Error.
|
|||
|
if (r < 0) throw new Error(`negative radius: ${r}`);
|
|||
|
|
|||
|
let dx = r * Math.cos(a0),
|
|||
|
dy = r * Math.sin(a0),
|
|||
|
x0 = x + dx,
|
|||
|
y0 = y + dy,
|
|||
|
cw = 1 ^ ccw,
|
|||
|
da = ccw ? a0 - a1 : a1 - a0;
|
|||
|
|
|||
|
// Is this path empty? Move to (x0,y0).
|
|||
|
if (this._x1 === null) {
|
|||
|
this._append`M${x0},${y0}`;
|
|||
|
}
|
|||
|
|
|||
|
// Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
|
|||
|
else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {
|
|||
|
this._append`L${x0},${y0}`;
|
|||
|
}
|
|||
|
|
|||
|
// Is this arc empty? We’re done.
|
|||
|
if (!r) return;
|
|||
|
|
|||
|
// Does the angle go the wrong way? Flip the direction.
|
|||
|
if (da < 0) da = da % tau + tau;
|
|||
|
|
|||
|
// Is this a complete circle? Draw two arcs to complete the circle.
|
|||
|
if (da > tauEpsilon) {
|
|||
|
this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
|
|||
|
}
|
|||
|
|
|||
|
// Is this arc non-empty? Draw an arc!
|
|||
|
else if (da > epsilon) {
|
|||
|
this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
|
|||
|
}
|
|||
|
}
|
|||
|
rect(x, y, w, h) {
|
|||
|
this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
|
|||
|
}
|
|||
|
toString() {
|
|||
|
return this._;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
function path() {
|
|||
|
return new Path;
|
|||
|
}
|
|||
|
|
|||
|
// Allow instanceof d3.path
|
|||
|
path.prototype = Path.prototype;
|
|||
|
|
|||
|
function pathRound(digits = 3) {
|
|||
|
return new Path(+digits);
|
|||
|
}
|
|||
|
|
|||
|
exports.Path = Path;
|
|||
|
exports.path = path;
|
|||
|
exports.pathRound = pathRound;
|
|||
|
|
|||
|
}));
|